
mobileHIVE - Final Project Report

StreetDroids - A Mobile Context-Aware Game
for Android

University of Applied Sciences Bremen

University of Applied Sciences Bremerhaven

16th of April, 2010

..........

Contents

1. Executive Summary 7

2. The concept 10
2.1. StreetDroids Concept and Game Mechanics 10

2.1.1. StreetDroids Original Idea . 11
2.1.2. StreetDroids Aims and Objectives 12
2.1.3. Description of the Game Mechanics 12

2.2. Conceptual Structure . 14
2.2.1. Spatially expanded . 15
2.2.2. Location based . 16
2.2.3. Spatial narrative . 17
2.2.4. Context awareness . 18
2.2.5. Mixed Reality . 19

2.2.5.1. What we wanted . 20
2.2.5.2. What did not work . 21
2.2.5.3. What is still there . 21

2.2.6. Collaboration . 21
2.2.6.1. Player-player interaction 21
2.2.6.2. Community . 22
2.2.6.3. User generated content 24

2.2.7. Open play . 25
2.3. Collaboration Concept . 27

2.3.1. Current state of collaborative games 28
2.3.2. Collaborative puzzle . 30

2.3.2.1. The general idea of the collaborative puzzle 30
2.3.2.2. Puzzle mechanic . 30
2.3.2.3. Puzzle technical details 31
2.3.2.4. Design . 32

2.3.3. Example: Roland on Fire . 32
2.3.4. Final Considerations . 37

2.4. Learning Orientation . 39
2.4.1. Learning in games . 40

2.4.1.1. Five levels of learning . 40
2.4.2. Learning theories . 41
2.4.3. Why do we need learning objectives? 42

2

2.4.4. Learning Objectives . 43
2.4.4.1. General learning objectives 43
2.4.4.2. Concrete learning objectives 45

2.5. Content Choice and Use . 48
2.5.1. History as Content . 49
2.5.2. Applying content to the puzzles . 51

2.6. Documentation . 54
2.6.1. Documentation . 55

2.6.1.1. Vision Document . 55
2.6.1.2. Game Mechanics Document 56
2.6.1.3. Product Backlog . 56

3. The implementation 57
3.1. Basics . 57

3.1.1. Mobile Platform Selection . 57
3.1.1.1. Criteria definition . 58
3.1.1.2. Platform choice . 60
3.1.1.3. Conclusion . 61

3.1.2. Web Platform Selection . 62
3.1.2.1. Rapid programming language 64
3.1.2.2. "Batteries included" . 65
3.1.2.3. Availability of Django and its extension GeoDjango 65

3.1.3. Android in a Nutshell . 66
3.1.3.1. Android Anatomy . 67

3.1.4. Django in a Nutshell . 71
3.1.4.1. Introduction to Django 72
3.1.4.2. Model-View-Controller Pattern 72
3.1.4.3. Components of the Django Framework 73

3.2. System architecture . 74
3.2.1. Overview . 74
3.2.2. Client Architecture . 78

3.2.2.1. Activities . 82
3.2.2.2. Package Structure . 85

3.2.3. Server Architecture . 87
3.2.3.1. Deployment and Dependencies 88
3.2.3.2. Overview . 89
3.2.3.3. Core . 89
3.2.3.4. Supplements . 90
3.2.3.5. Anatomy of a Puzzle Application 91

3.2.4. Client-Server Communication and Server API 93
3.2.4.1. The function of the webservice in the context of Street-

Droids . 94
3.2.4.2. Considerations . 95
3.2.4.3. The RESTful StreetDroids API 96

3

3.2.4.4. Server implementation 98
3.2.4.5. Client implementation . 100

3.3. Puzzle implementation . 103
3.3.1. General Aspects . 103

3.3.1.1. GenericPuzzle . 104
3.3.1.2. PuzzleActivityInterface 104
3.3.1.3. PuzzleActivity . 105
3.3.1.4. Puzzle class . 108
3.3.1.5. NPC package . 109
3.3.1.6. Drag and Drop Puzzle . 109
3.3.1.7. Hotspot Puzzle . 110
3.3.1.8. Missingpart Puzzle . 110
3.3.1.9. Adding a new puzzle . 110

3.3.2. Technique for Image Recognition 112
3.3.2.1. Implementation . 113

3.4. Graphical interface . 118
3.4.1. Technical Aspects . 118

3.4.1.1. Buttons . 119
3.4.1.2. Animation . 120
3.4.1.3. Picture format . 120
3.4.1.4. Drag and Drop . 121
3.4.1.5. Screen Orientation . 121

3.4.2. Design Aspects . 122
3.4.2.1. Design Considerations for Small Screens 123
3.4.2.2. Design Concept for the Game 125
3.4.2.3. Icons and Menu . 126
3.4.2.4. Colors . 128
3.4.2.5. Game Interface . 129
3.4.2.6. Navigation Design and Immediate Feedback 132
3.4.2.7. Characters . 134
3.4.2.8. Final Considerations . 137

3.5. Web Platform implementation . 139
3.5.1. Purpose of the Web Platform . 139

3.5.1.1. User Profile . 140
3.5.1.2. Inventory . 140
3.5.1.3. Rankings . 140
3.5.1.4. Search and Sort Content 141
3.5.1.5. Create Content . 141

3.5.2. Technical Details and Structure of Editors 142
3.5.2.1. Workflow from the user perspective 143
3.5.2.2. Workflow from an architectural perspective 145
3.5.2.3. Workflow from an implementation perspective 145
3.5.2.4. Diagram . 146
3.5.2.5. Outlook . 146

4

3.6. Issues and Solutions . 149
3.6.1. Downloading Time Issues . 149

3.6.1.1. Problem statement . 150
3.6.1.2. Investigation . 150
3.6.1.3. Solution . 150

3.6.2. Memory Leaks . 152

4. Results 154
4.1. Prototypes . 154

4.1.1. First Prototype (Paper Prototype) 154
4.1.1.1. StreetDroids paper prototype 155

4.1.2. Final Prototypes and Their Application 158
4.2. Evaluation . 158

4.2.1. Objectives . 159
4.2.1.1. What do we want to achieve with the evaluation 159
4.2.1.2. What can be tested . 160
4.2.1.3. Methodology . 160

4.2.2. Criteria . 162
4.2.2.1. Usability . 162
4.2.2.2. Playability . 164
4.2.2.3. Satisfaction . 167
4.2.2.4. Explorability . 168

4.2.3. Results . 168
4.2.3.1. The questionnaire . 168
4.2.3.2. Product Reaction Cards 170
4.2.3.3. General observations . 170
4.2.3.4. Usability . 172
4.2.3.5. Playability . 175
4.2.3.6. Satisfaction . 178
4.2.3.7. Explorability

181
4.3. Future Work . 183

5. Conclusion 188

Bibliography 190

A. Visual Documentation 201
A.1. mobileHIVE . 201

A.1.1. Name of the Project: Chosen by votes, at 29.05.2009 201
A.1.2. Logo of the Project: Chosen by votes, at 05.06.2009 201

A.2. StreetDroids . 201
A.2.1. Name of the Game: Chosen by votes, at 08.10.2009 201
A.2.2. Logo of the Game: Chosen by votes, at 05.11.2009 202

5

A.3. WebDesign . 202
A.3.1. WebDesign model for the Game: Chosen by votes, at 19.11.2009 202

A.4. Poster for promotion . 203
A.4.1. Poster for the Game: Chosen by votes, at 05.02.2010 203

6

1. Executive Summary1

1Isabella Lomanto, Jana Wedekind

7

“In a gathering and hunting society children play with arrows, in an informa-
tion society children play with information.” (Levy, 1997)

Originally the master project was designed to be two separate ones: Game-based
learning in Museums from the University of Applied Sciences Bremerhaven and Con-
tacts in Context from the University of Applied Sciences Bremen. Putting them together
in the mobileHIVE project confronted both groups with some great advantages as well
as some difficulties. In the beginning this fusion meant for the whole group to find a
new combined project that fit to most of the criteria of the two old ones. After long dis-
cussions and a lot of brainstorming a new idea evolved, which took the game out of the
museum, and placed it in the city of Bremen. The new combined Context-aware Mobile
Learning Game was born. Though the general description for the mobileHIVE project
was found, now an idea for the actual game was needed. Starting off with several ob-
jectives, soon the vision of a treasure hunt formed and became the starting point for the
game development.

Several games on the market were studied in order to see what other institutions or
companies were working on at the moment, and to find out where our project could fit
in. One conclusion of this preliminary research was that learning games are sometimes
seen as non appealing and behind the times by students. Technology evolved and in the
last decade the usage of mobile phones increased immensely. New technologies there-
fore allow new ways of user interaction. Especially the application of touch interfaces
within affordable devices gives developers new possibilities. By using new technologies
and devices (like the Android G12) a game can be created, that is more appealing to
new generation of users. These new technologies support approaches such as context-
and location-awareness, which can be used to make games that are more connected to
the real world and to the community around the user. This can be seen for example in
MobiMissions3 from the Futurelab4, a location-based, social, mobile phone experience.

The main question deriving from the research was how to create a context-aware mo-
bile learning game where the player can experience a different way of learning through
interaction with the environment and other players. The decision was to create Street-
Droids, an open game where the user community can contribute to its expansion and
moreover the game mechanics allow the implementation of different games scenarios
(e.g. a game in the city of Bremen) as so called maps are used to introduce the player
to a certain story. In a first step an exemplary map that uses the history of the old city
of Bremen was implemented. The game took place in the real world, which is called
pervasive gaming or real world mission games. Jane McGonigal defines the term per-
vasive gaming as follows: “Pervasive gaming is an experimental genre in which at least
some of the gameplay transpires in real world environments with the aid of mobile and
ubiquitous computing technologies.” (McGonigal, 2007) As an inspiration for this genre

2The G1 was the chosen Android mobile device for the StreetDroids Project. Further information about
this device is available in: http://www.androidg1.org/

3http://futurelab.org.uk/projects/mobimissions
4http://futurelab.org.uk/

8

of games the artistic group Blast Theory5 has to be mentioned. The game GPS Mis-
sions6 is another example showing how up-to-date the idea of using mobile devices
within real surroundings is.

StreetDroids is a context-aware mobile game where players are encouraged to learn
by exploring and interacting with the city. It was developed over a year by the sixteen
members of the mobileHIVE project and the two project supervisors Prof. Dr. Ulrike
Erb (HS-Bremerhaven) and Prof. Dr. Thorsten Teschke (HS-Bremen). This report
describes the work that led to the development of the StreetDroids game. The content
of the report is divided in three parts: concept of the game, implementation, and results.

Chapter 2 explains in detail the concept of the game starting from the original idea.
This chapter sets out the theoretical foundation that supports our research, and the
conceptual structure used in the game design. It includes an overview of the game
mechanics and a thorough description of how the collaboration and learning aspects
were applied in StreetDroids. In the end, the topic of content re-usability is addressed
in section 2.5. Here the content chosen for the prototype is presented, focusing in the
reasons why this particular content was used and how different contents can be applied
to StreetDroids by using the web platform.

A third chapter covers the actual implementation of the project. This chapter deals
with the technical and design decisions that gave shape to StreetDroids. It begins
by presenting the basic technologies employed in the development of the game and
its online community. Then it describes in detailed the system architecture and the
concrete implementation of both the mobile and web platform, including the problems
that occurred and the solutions applied. Furthermore, this chapter offers an overview
of the final stage of development achieved in the final prototype.

Finally, in Chapter 4 the main results of the project are described and reviewed. Here
the prototyping process is explained, including a reference to the demo videos of the
functionalities of the final prototypes and their applications. Section 4.2 gives a com-
plete account of the evaluation process and an extensive analysis of the play-testing
results. Additionally, this chapter presents the future work that can be done to expand
or continue the project research.

5http://www.blasttheory.co.uk/bt/type_games.html
6http://gpsmission.com/

9

2. The concept

2.1. StreetDroids Concept and Game Mechanics1

1Cristina Botta, Isabella Lomanto, Joatan Preis Dutra

10

2.1.1. StreetDroids Original Idea

The original idea was to build an outdoor game based on the concept of treasure hunt,
where the player must find and collect items through real scenarios – such as the old
city of Bremen, for instance. The game serves as background to achieve the some
learning goals related to history; the original goal was to enable students to learn about
history through personal experience at the original historical places, supported by mo-
bile devices, making the city itself as a “live museum”. This could be advantageous
feature for the learning process, adding extra external source beyond books, in reason
of a direct contact with the subject matter in a playful approach.

The original concept for the game started with the idea of offering a different and
attractive learning material for the students, combined with the concept in using the city
as an open playground. Teaching history as a subject could be improved if it is possible
to use real world experiences, which would make a different approach on traditional
learning methods. With an electronic gadget, here represented by a mobile game, the
kids would be more motivated to explore historical places while learning about their
importance.

A guided outdoor learning possibility could be expected to motivate especially the
young students to take initiative and improve the exchange of information between
them. A treasure hunt game running on the cell phones of the students could offer a
fun way to deal with historical contents about the environment they are placed. Another
advantage of this game concept lies in the fact that a treasure hunt could be composed
by any author (i.e. teachers) with enough knowledge of the location. The work could
be done from anywhere, through an online platform, integrating several kinds of media
(audio, images, video and text). It means, for example, a scheduled travel to a near city
could be changed into a treasure hunt adventure: the teacher just has to upload the
map into the cooperative system and add the puzzles to provide the learning content
for the planned route.

With its potential for enriching traditional classes, the game could be part of local
historical lessons for a school. For the sample adventure, the old history of Bremen will
be uncovered through the game route tasks. The students can better integrate the facts
during the game in their already existing conceptions, when they have some previous
knowledge about the topic. A simple touristic guide could be a derivation of the original
idea, but it will not be attractive enough for the educational purpose.

The history of Bremen covers important aspects that are crucial for understanding
the impact and influence about the past facts that shaped the present of the city. For in-
stance, Bremen was part of the Hanseatic League (Hanse, 2009), and was called “Freie
Hansestadt Bremen” (BremenOnline, 2009), there is a Roland and Stadtmusikanten
statues around of the City Hall, leading to questions as: what are the meanings behind
them or why are these momuments important? Here, the learning exploration possibil-
ities are wide open, that is why the first target for the game was the old city of Bremen
and its historical aspects.

The game original idea supports constructivist learning, as “constructivism, like ob-
jectivism, holds that there is a real world that we experience. However, the argument is

11

that meaning is imposed on the world by us, rather than existing in the world indepen-
dently of us. There are many ways to structure the world, and there are many meanings
or perspectives for any event or concept” (Duffy and Jonassen, 1992).

It could be expected that users will be able to enhance their learning while playing
adventures, because learning subjects come into tangible real-world reach and users
must engage personally and apply multi-strategy problem-solving in order to complete
the adventures. More than just a game, it can be a powerful – easy to use and adaptable
– tool to the organization of creative and fun activities, associating the playful aspects
to the educational objectives.

2.1.2. StreetDroids Aims and Objectives

The main objective of the mobileHIVE project was to create a context-aware mobile
game in which players gain knowledge by actively interacting with the environment and
other players. StreetDroids was developed in response to this objective, following the
hypothesis that such a game could bring about a more immersive and dynamic game
experience. Hence, StreetDroids should allow the players to connect the game world
to the real world, so that they could join digital content with real life objects.

The specific aims in the mobileHIVE project were:

• to understand how mobile games can enhance and motivate learning processes
through the exploration of a given environment.

• to create a mixed-reality environment, where players can collaborate inside and
outside the game; inside by context-aware interaction and outside through an
online user community.

• to develop a context-aware application for the Android platform that allows for
content reusability.

2.1.3. Description of the Game Mechanics

A story map is what glues the theme of the game together, in the example developed
by our team it is the history of Bremen. A story map can contain one or more missions
related to the same theme. These missions are made of two or more puzzles, which are
connected in a predefined circuit. When the player begins she can not see the location
of these puzzles. Since the circuit can be started from any of the puzzles, the one which
is closer to the player’s location when he enters the game will be revealed as a starting
point. A puzzle is an activity that has to be performed at a distinct place in order to gain
information and items.

Non-playable characters (NPC) are used to guide the player through a mission. They
are the ones to give the player hints on how to solve the puzzles, and information on
how to find the next puzzle in the circuit. In the case of the test scenario that could
mean that the characters giving the player information are directly related to the history
of Bremen, and to the current location they are talking about. This helps to keep the

12

information in context and make the game experience more immersive for the player.
Instead of having the device simply displaying some textual information, the NPC is part
of the story and can react to the player’s decisions.

Puzzles have the objective of creating a bridge between player and environment. The
information that is given in the puzzles is only complete when the player examines the
place/building that is related to it. Thus, puzzles can only be solved with information
from both worlds, the real and the digital.

After successfully solving a puzzle the player will receive an item from the NPC.
These items are stored in the player’s inventory and have some information attached
to them. The information attached to the items is consisting of short texts that are
supposed to help the player have a better understanding of the story.

All missions have to be played to finish the whole story, but with each mission a
part of the story will be completed, missions can therefore be played independently.
An essential part of the game concept is the possibility to contribute to its expansion
through the online community. This means that players are able to create the following
parts of the game: stories/missions, puzzles, characters, and items. All created parts
should be re-usable and editable by anyone in the community.

13

2.2. Conceptual Structure2

2Cristina Botta, Isabella Lomanto

14

Following the objective to create a context-aware mobile learning game where the
player can experience a different way of learning through interaction with the environ-
ment and other players, we identified the main design requirements that define the
game mechanics. Besides being context-aware our game should be reusable in differ-
ent scenarios or contexts, allow and encourage collaborative play, support and enhance
mobile learning, and be engaging and fun at the same time. Including all these require-
ments in a single application presented a major challenge. As a design solution we
came up with the main features that differentiate our game and respond to our precon-
ditions. According to these features our game is defined as:

• Spatially expanded

• Location based

• Spatial narrative

• Context aware

• Mixed reality mediation

• Collaboration

• Open play

In the following sections the main features of our game will be explained in detail.

2.2.1. Spatially expanded

Since our goal was to design a context-aware game where the player can interact both
real and virtually with the environment we decided to incorporate in the game mechan-
ics some of the characteristics that identify pervasive games. While there is not one
precise or completely accepted definition of this game genre, pervasive games can be
distinguished from traditional game genres because they blur the boundaries between
game fiction and reality by using the real world as a gameplay area (Montola, 2005),
(McGonigal, 2007). Montola’s approach to pervasive games puts emphasis on how this
type of games disrupts and expands the magic circle (Salen and Zimmermann, 2003)
that defines traditional game experiences. He argues that this magic circle can be ex-
panded in one or more of three directions: socially, spatially or temporally. He explains
that these transgressions produce a sense of ambiguity which would in extreme cases
make the game appear as if it was not a game (Montola, 2005). McGonigal has also
identified these extreme cases of pervasive games as alternate reality or immersive
games, which she argues are based on a This is Not a Game rhetoric. However, in the
design of StreetDroids the focus was not in this type of pervasive games. The objective
was not to completely blur the magic circle but to examine and experiment with the de-
sign possibilities that emerge by altering some aspects of it. In particular, we focused
on the potential of the spatial expansion offered by pervasive play. Montola argues that

15

what he calls spatial expansion in games brings the opportunity for people to reclaim
public space, to explore it in different ways and to rediscover it (Montola, 2005).

Nevertheless taking the gameplay to the public space or allowing the player to move
into different scenarios outside the virtual game world is not enough for a game to be
considered spatially expanded. Montola affirms that mobile games are not spatially
expanded in nature, it is the relation they establish with the physical world and the
meaning of this relation within the game what allows spatial expansion in mobile games.
“The spatial expansion only applies to games that are affected by the player’s spatial
context, usually in relation to physical places or to other players.” (Montola, 2005).

In order to be able to enhance player experience and motivate learning processes,
exploration as a mode of interaction is at the core of the game mechanics of Street-
Droids. To design this meaningful exploration it was very useful to consider the dis-
tinction between space and place. Different studies such as (Davies, 2007), (Dourish,
2006), (Reid, 2008) have shown that the notions of space and place can be used to cre-
ate player immersion in pervasive and location-aware games. Of special significance
are the arguments presented by Paul Dourish. For him space and place are both prod-
ucts of social practice. However, he finds that whereas space describes geometrical
arrangements that might structure, constrain, and enable certain forms of movement
and interaction, place denotes the ways in which settings acquire recognizable and
persistent social meaning in the course of interaction (Dourish, 2006). This distinction
is fundamental for designing an active and more immersed relation with the environ-
ment in games. In particular for pervasive or location-aware games it means that the
players will be moving in both space and place; in space by navigating through a geo-
graphical map, and in place by exploring and emotionally interacting with the physical
environment.

2.2.2. Location based

The design of our game as a location based game responds to the idea that spaces
and places store and communicate narrative, aesthetic and psychological information
(Davies, 2007). We wanted to use the interaction with space as a medium to deliver
learning content and to create greater immersion in the game. For this reason we set
the city, in particular the Old Town of Bremen, as the game world where the actions will
take place. We encourage the players to explore the environment by interacting with
real world people, objects and places as well as with virtual ones. As Jane McGonigal
explains that the goal of pervasive game design is to take advantage of the possibil-
ities offered by ubiquitous computing technologies in order to allow the players to be
immersed in reality itself, rather than in a digitally rendered virtual reality (McGonigal,
2007). Following these ideas we designed a map based interaction with the space in
which the players can choose either an open map where they move freely and find
the puzzles of the game as they go, or a story map that is based on a story that will
indirectly take them to certain related puzzles by discovering and following hints em-
bedded in meaningful places. In either case, the open or the story map, players have
the freedom to start at any point they want. Even in the story map we wanted to give

16

the feeling of free exploration by having the route of the mission or connection between
the puzzles hidden.

Some of the examples of good and interesting pervasive, location aware or real-world
mission-based games that we considered for designing our game are: Uncle Roy All
Around You3, MobiMissions4 Interference.5 What these games have in common to ours
is that they set the game in the urban environment by placing the game activities and
missions into the real world. These three games also incorporate narrative elements
and open channels of player-to-player communication. As well as these games we
looked at projects that involved user content creation of missions, games or activities
embedded in the real world, such as GPSMissions6 and Mscape7. These are systems
that allow players to design their own context or location aware experiences supported
by a community that share and exchange their creations.

We believe that one of the successful mechanisms employed in these games is giving
the player the ability to place, collect or interact with virtual objects embedded in the
real world as part of the game play. This enriches the game experience and allows
for emergent behaviors (Reid, 2008). For this reason we have included these type of
interactions as part of the game mechanics. However, this type of interaction with the
physical world is still limited in many of these games because it reduces exploration to
a simple mechanic of going to a place and triggering a reaction in the game. Our game
design aimed to support a more complex and meaningful exploration, which would allow
the player to relate emotionally with the environment. Our goal when defining our game
mechanics was to enable the player to experience the game environment as both space
and place.

2.2.3. Spatial narrative

One of the first choices that we made when designing the mechanics for our game was
to include narrative elements and role-play interactions. The idea was to have a story
drive the game play and make the players take the roles of different characters and
relive the story through the characters’ partial perspectives. However, if this was meant
to be the main structure of our game, we had to simplify the story and make the roles of
the characters more general in order to allow the reusability and the replayability of our
game. We decided to keep the idea of having a story drive the flow of the game play
and the different characters perspectives but we chose a specific form of narrative, the
environmental storytelling.

According to Henry Jenkins environmental storytelling “creates the preconditions for
an immersive narrative experience in at least one of four ways: spatial stories can
evoke pre-existing narrative associations; they can provide a staging ground where

3http://www.blasttheory.co.uk/bt/work_uncleroy.html
4http://www.futurelab.org.uk/projects/mobimissionsand
5http://www.pervasive-gaming.org/iperg_games13.php.
6http://gpsmission.com/
7http://www.mscapers.com/

17

narrative events are enacted; they may embed narrative information within their mise-
en-scene; or they provide resources for emergent narratives” (Jenkins, 2004). This type
of narrative worked quite well with our game idea because we needed the environment
to be the main character of our story and to let the events be told in great amount by
the interaction with places and objects. For our game “spatial stories” have the benefit
that they are episodic, privilege spatial exploration over plot development, have broadly
defined goals and are driven by the character’s movement across the map (Jenkins,
2004).

We applied this idea of spatial narrative into our game by creating one scenario or
story map where a main but general story sets the atmosphere and the principal conflict
by describing the ultimate objective of the game. The players choose to follow the
particular view of one or more of the characters in the story to reveal the solution to
conflict of the story. However, the role or mission of each character is compelling in its
own terms and could be played independently and still be meaningful and enjoyable.
We decided to have these two levels of the story to allow a more open game play,
that supported single or multi-player modes and that gave the player the opportunity to
choose which, when and how many characters he or she would play.

2.2.4. Context awareness

The concept of context have been long discussed in the research on human computer
interaction. Perhaps one of the definitions most widely accepted is the one by Dey
et al. 2001 “any information that can be used to characterize the situation of entities
(i.e. whether a person, place or object) that are considered relevant to the interac-
tion between a user and an application, including the user and the application them-
selves”.(Dey et al., 2001) However, Terry Winograd (Winograd, 2001) makes an impor-
tant adjustment to Dey et al. definition. This author proposes a more specific definition
that focuses on the communicational aspect. He argues that context is an operational
term, and that some information becomes context because of the way it is interpreted
and not because of its inherent qualities.

Our idea of a context aware game falls into Dey and Winograd perspective, because
we aim for a form of interaction in which the responses of our system are triggered by
the contextual information that is relevant in each moment of the game. As the player
moves and interacts with the environment the context of the game play is constantly
changing and a context aware responsive system is needed to support this form of
interaction. The context in our game does not only include the location, but a broader
spatial relation to places, objects or other players, as well as the history of the player
(where he or she has been and where will go) in the game.

From the game experience point of view the ability of the system to respond automat-
ically to the changes in the players context produces a sense of coincidence which is
felt as a magical unexpected event by the player. Coincidence is defined by Josephine
Reid as “the noteworthy alignment of two or more events or circumstances without ob-
vious causal connection” (Reid, 2008). She also argues that having an understanding

18

and knowledge of the environment can maximize the chance and effectiveness of these
coincidental magic moments, which can be also artificially created inside the game.

Finally we believe that context awareness helps the player feel free to make mean-
ingful choices that influence the game outcome. However, the player does not have to
literally tell the system everyone of his or her choices. On the contrary, the idea is that
his or her interaction with the physical space will be naturally translated into the virtual
environment of the game and vice versa. As Katie Salen and Eric Zimmerman argue
the ability of the player to freely explore the environment and the interaction with the
context that surrounds this exploration produce emergence and leads to unpredictable
narrative experiences (Salen and Zimmermann, 2003).

2.2.5. Mixed Reality

Mixed reality, or augmented reality, explores the application of computer-generated
images in live-video streams as a way to expand the real-world. Milgram and Kisinho
(Milgram and Kishino, 1994) established a Mixed Reality dimension that attempts to
define a continuous scale along which environments that mix the real and virtual can
be defined. At one end of the spectrum are totally real environments with nothing
virtual in them at all. At the other end of the spectrum are virtual environments without
any real components. In the middle are augmented reality and augmented virtuality.
Augmented reality would be according to this definition, a combination of the real and
the virtual, which contains more real than virtual. This could be an environment in
which virtual elements, like people or objects, are added to a real location. The other
side of augmented reality is augmented virtuality, and this may be thought of as adding
elements of reality to a virtual environment. Here one might be projecting a real person
or an object into an otherwise virtual environment.

The above definition was created with immersive technologies in mind, like for ex-
ample having the player wear a helmet or goggle and seeing real-time virtual informa-
tion overlaid on a real environment. Klopfer (Klopfer, 2008), suggests a more suitable
spectrum for games that are still augmented reality, but use commercial off the shelf
technologies, which is the case of StreetDroids. He has used a spectrum that defines
the weight of the augmentation along a continuum from light to heavy. The weight refers
to how much virtual information is provided to the player. A lightly augmented reality
has the player using a lot of the physical reality and accessing virtual information quite
rarely. Players may look at the virtual information every few minutes or even hours. A
heavily augmented environment relies on frequent access to virtual information. That
information may be accessed on the order of seconds or even continuously.

With StreetDroids, the objective is to use mixed reality to emphasize experiences
where the environment matters in a non-trivial way, and does not simply act as a back-
ground for a game with overlaid media. From the artifacts found in a real city to the
people sharing experiences and their creations with the community, the place and peo-
ple are what gives the experience its meaning. Augmented reality games combine
different forms of media and real-world presence to create an experience that actively
blurs the border between fiction and reality. It encourages the participants to engage

19

with reality, not escape from it. As in pervasive gaming it blurs the boundaries between
what is game and what is real, the “magic circle” (Salen and Zimmermann, 2003).

Games and any kind of participatory simulation propitiate a high level of personal
engagement. By using mixed reality, and pervasive gaming principles, we want players
to be more aware of the environment around them, what happens (or has happened)
there, and the people who inhabit it. Augmented reality is also a great way to simulate
a real life experience. Being in the field enables the player to get a much better sense of
the terrain that he or she has to work with, it allows for a more authentic feel, and also
may change some decisions the player makes during the game. The player can see
who are the people using that space and how they interact with it, if it is noisy or has
a lot of traffic, and therefore be more informed about the real consequences an action
has towards this place.

2.2.5.1. What we wanted

At first the objective was to make moderate use of augmented reality (AR) by overlaying
images and objects on the camera view of the mobile device, and have players pick up
and use virtual objects that would “be” laying around the city like any real object. We
also wanted to use AR in an interesting and meaningful way and not just for the “novelty
factor”. The use of AR would have to make a real difference in how the player interacts
with the world around him to be in the game.

Some interesting ideas arose from the brainstorming meetings:

• Have a wall in the city center where people could leave virtual/AR notes, clues
and pictures for other players.

• Mark items for other players (e.g. here is a door that can be opened with the key
from the other character).

• Players can leave items behind for other players (e.g. a key that only one specific
character can receive, but only another one can actually use).

• An overlay showing how a building looked in the past.

One requirement for AR to be used was that it had to run directly on the mobile device,
without the help of any other device. This decision was taken for two main reasons. The
first being accessibility, so more people could play the game without having to own a
lot of electronic equipment. Also one of our objectives was to create a community and
expand the game, but if players have to own a lot of expensive equipment this would
become almost impossible. The second reason is portability, to give the player freedom
to come and go easily, and to be able to just pick up and play anytime, anywhere.

Another requirement was that it had to work outdoors, since the whole idea of the
game is based on space and environment. It also would have to work without fiduciary

20

markers8, since it would be impossible for the team, and later for the community to go
around the city sticking markers to buildings.

2.2.5.2. What did not work

When the project started, the objective was to implement the team’s ideas with off the
shelf technology and the available AR toolkits and SDKs. After many members of the
team researched on the subject for quite a while it was concluded that using this level
of AR would be a huge project on its own. All prototypes and games found ran not from
the mobile device used for playing, but from a laptop being carried in a backpack, or
from servers. Some of them also used goggles9.

2.2.5.3. What is still there

Using Klopfer’s definition (Klopfer, 2008) StreetDroids is on the lighter spectrum of aug-
mented reality. The augmentation comes from the use of location awareness, virtual
NPCs that the player can only interact with when he or she is at the right place, informa-
tion and puzzles connected to the players current position, the use of a virtual compass
and map, and awareness of other people playing in the same area, which would trigger
special features.

StreetDroids makes the location in which it is being played a key factor to the game-
play. Players move in real space and get the information from the device when they
reach certain places or trigger points. Without a real environment there is no game,
since players are required to explore places in a real city to find the answers to the
puzzles. The information is given to players in the device display by virtual NPCs, but
still the most important part of the game is to explore and observe the real environment.
Some players might even consider the possibility of interacting with the locals by asking
questions that might help to solve a puzzle, consequently not having to pay for a hint
from the NPC. This is also another way of stimulating players to talk and interact with
the people around them.

2.2.6. Collaboration

There are different ways to collaborate in StreetDroids. One is directly while playing the
game, by participating in puzzles that can only be solved by two or more people. The
other way of collaborating is by creating content, expanding the game, and being an
active member of the online community.

2.2.6.1. Player-player interaction

Conversation theory (Sharples et al., 2005) states that the process of sharing infor-
mation, of having a continuous communication, helps the learner to achieve a better

8http://en.wikipedia.org/wiki/Fiduciary_marker
9http://www.ipcity.eu/?page_id=10

21

understanding of the learning objectives.
In StreetDroids this sharing happens either through interaction with the online com-

munity or through player-player interaction during the playing of the game. One planned
feature was for players to be notified if anyone nearby is also playing the game giving
them the option to communicate through chat, and the possibility to help each other or
play “together” even if using separate devices. Another feature that was planned, but
not implemented, was to have multiplayer puzzles that would be activated when two or
more players are in the same area. The player would have the opportunity to agree to
play together, or to not take part in the player-player interaction at all. If a player agrees
to participate in a collaborative puzzle she would get a reward, e.g. receive additional
coins or an extra item. These two features can also help to build a sense of community
through the sharing of experiences and information. This could then encourage people
to meet and play together or start being active on the online community.

The game mechanics are also open enough to allow different ways of playing the
game and different kinds of collaboration. If, for example, a map for a school class is
created, the class can be divided into teams that play against each other. Missions
could be done in a way to complement each other, and within a team the players would
have to exchange their knowledge in order to achieve their common goal, to win the
game.

The game is not dependent on in-game collaboration to be played though, and it was
also avoided to have a game that is only playable with a predefined number of people or
only at a certain time. By doing so the game lost some collaboration aspects, but gained
a lot of freedom. This subject is developed in more detail in section 2.2.7, “Open-play”.

2.2.6.2. Community

In finding each other, players discover what Bernie DeKoven would call their “play com-
munity” (DeKoven, 2002). DeKoven defines this community as a group of people who
want to play together, and may change games, and might even recreate game rules
with the objective of creating a balanced playing field for its members. The play com-
munity has a special tie, one that is different from what scholars of computer-mediated
communications refer to as “communities of interest” or “communities of practice”. Play
communities form around shared play styles and preferences.

“Different communities of play have different characteristics that arise out of
the combined play styles of the individuals within them, each of whom is, in
turn, transformed by the group play style. These play styles are also both
influenced and transformed by the spaces they are enacted in.” (DeKoven,
2002)

Another subject that is deeply connected with communities is fan culture. Henry Jenk-
ins has documented the fan culture of the so called Trekkies (Jenkins, 1992), fans of the
television show Star Trek, who have not only taken up, but also extended the mythol-
ogy of the classic science fiction world by creating, for example, alien dictionaries and
fan fiction. Trekkies are considered the pinnacle of nerd-dom in the US, and they are

22

just one example among many (X-Files, Lord of the Rings, Final Fantasy, are others).
All these fan communities foreshadow the growing participatory culture of play, one in
which players themselves take the central stage in the playground.

This player-centric approach views the game in the context of the agency it yields to
players, the experience they have while playing, and the social constructions that take
place in the context of play communities. “These communities set people in motion,
function as a cultural attractor and activator, and also create a common ground between
diverse communities” (Jenkins, 2006). Players and fans get more out of the experience
if they share it with others.

“When motivated by the group, players find in themselves new talents, abili-
ties and skills, which are further enhanced through a process of group feed-
back. Furthermore, based on the type of games players gravitate towards,
we can, to a certain extent, anticipate overall patterns of emergence based
on players’ play styles, predilections, and resident skills.”(Pearce, 2009)

The StreetDroids community works as hub, a way of bringing very different people
together. What unites all these different people from all over the world is playing Street-
Droids. But from there people can find their own niches, being it the real spaces they
visit or live in, common interests, or even competition. The community serves also as
a central for the player, where they have a profile, can see what they have already ac-
complished in the game and the information and items they have already collected in
their inventory.

The community gives many possibilities for people to find what they like, and if they
cannot find it they can create it, as long as it has some relation to a physical space.
These shared interests could be since living in, or simply liking, the same city to only
making puzzles about cheese, or only in places a certain TV show was filmed. People
are more encouraged to try something if they have someone to share it with and get
feedback from.

Competition can happen while playing the game, for example, who is faster, but in the
community there are many other possibilities. Instead of using a point system within the
game, the player can achieve different levels of experience, which will give him status
in the community. The level of experience increases not only by playing story maps or
puzzles, but also by collecting objects and information within the game, by taking part
into collaborative puzzles, and by contributing actively in the community.

Contributing by, for example, helping other players or creating content to expand the
game, can creates its own competition. Who makes the best puzzles, who has the most
creative stories or characters, and even competition between cities, like which one has
the most puzzles, or the most interesting ones, or the most active local community. The
possibilities are endless, and it almost impossible to predict what kind of community
StreetDroids would be, which kind of people would be the most active and influential.

23

2.2.6.3. User generated content

Pierre Lévy suggests that the “distinction between authors and readers, producers and
spectators, creators and interpreters will blend” to form a circuit of expression, with
each participant working to “sustain the activity” of the others. The artwork will be what
he calls a cultural attractor, drawing together and creating common ground between
diverse communities (Jenkins, 2006).

Online communities and games provide a networked media environment in which
players have the opportunity to modify, rebuild, and adapt a game’s message at the
levels of narrative, gameplay and/or cultural space. Players immerse in the challenge
of creating both permanent and evanescent elements in games and game systems.
Sometimes these elements are not explicitly part of initial game design, and often sub-
vert it. While it is only a relative minority of players that participate in game modification,
their contribution to the overall game community makes sure that a continuous flow of
new game modes, contexts, and content expands and contributes to keep the game
alive.

The online environment also encourages and quickens distribution, as it allows for
the propagation of instructions and advice, and lets players form spontaneous working
groups. Even single player games, such as Maxis’ The Sims10, have the opportunity
to become an actual multiplayer game through the communities that are born around
them.

Keeping StreetDroids alive, with its content up to date, and independent of its devel-
opers was one of the motivations to create a community, since after the project time
was over there would be no one to take care of it or create more content for it. Un-
less the developers would be active in the community themselves, of course. At this
point, as Pierre Lévy suggested, the distinction between developers and players would
disappear completely.

StreetDroids also falls in the category of a single player game that could be turned
into a multiplayer experience through its community. Either by people working together
to create a Story Map, or by trying to create an actual multiplayer map, which was not
created by the developers, but could be done by a creative community. As stated in the
second paragraph, it is not unusual for players to alter the way a game is supposed to
work. It would have been definitely interesting to see what kinds of things people would
try to do with StreetDroids.

According to researchers Salen and Zimmerman (Salen and Zimmermann, 2003)
player-produced modifications can occur in one of two ways: production occurring within
the magic circle moving outward (inside > out), or production taking place within culture
that moves inward to affect the game (outside > in).

An example of the former would be machinima, and the huge community that exist
around this culture. There are even series created from games like Halo, as for example
Red vs Blue11, a comic science fiction series.

10thesims.ea.com/
11http://halomachinima.wikia.com/wiki/Red_vs_Blue

24

The (outside > in) aspect of collaboration is already becoming mainstream even in
commercial games, and as an official feature instead of hacking, which was the norm
until recently. Some examples of this are creating tracks on a racing game, like in Excite
Bike12, or music that can later be used in the game, like in Guitar Hero13, or even the
whole level and characters, like in Little Big Planet14. These all can be later shared in
online communities like XBox Live Arcade15 or the PlayStation Network16, for example.

We wanted to create the (outside > in) aspect of adding and/or modifying the game,
by allowing players to create their own experiences and contribute freely to expand the
game world. At first the idea was that players would, through an editor in the online
community, be able to create story maps about any subject that interested them. Thus
if they wanted to create a food, music, or an architecture story map it would all be
possible.

Later we realized that this could greatly reduce the number of people creating content.
Very few people would have the time and the will to create characters, puzzles, a whole
story, and tie it all together. Therefore it was decided that the whole system should
have a lower entry barrier, be more reusable, and faster for the user to be able to create
and contribute with something. The objective was to keep the creation of content as
accessible, as fast and as easy as possible, so more people would want to use it. By
having a lower entry barrier and giving the creators as much freedom as possible we
also hope to create as diverse a community as possible.

The editors now would give community members the possibility to contribute by cre-
ating or modifying puzzles, characters, items, and missions/stories. All created parts
being re-usable by everyone and independent of each other. This means members can
use existing puzzles to build their own story maps, as well as building a story map from
scratch. It would now also possible to only create a single puzzle or only a character,
that can then be re-used by other members if the so desire. This way a person in the
community who knows a lot about the history of a certain place, but just wants create
puzzles, because he is not, for example, interested in storytelling, could do so. And
lets say another community member loves to write, but has no patience to think about
puzzles, she could simply integrate already created puzzles into her Story Map.

2.2.7. Open play

As mentioned earlier, we wanted to avoid a game that is only playable with a predefined
number of players or only at a certain time. Our objective was for players to be able to
play at any time they want, anywhere there are available puzzles, thus creating a more
spontaneous experience. Another objective was to allow the game to be continuously
played, and not be tied to sessions. One example of how this could cause the player
to give up on playing the game is the possibility of people not finding anyone to play

12http://en.wikipedia.org/wiki/Excitebike#Modes
13http://en.wikipedia.org/wiki/Guitar_Hero_World_Tour#Custom_songs
14http://en.wikipedia.org/wiki/LittleBigPlanet#Content_creation
15http://en.wikipedia.org/wiki/Xbox_Live_Arcade
16http://en.wikipedia.org/wiki/PlayStation_Network

25

with. In this case the player would have to wait, or set an appointment with friends
or people in the community to be able to play. Also being only able to play when the
game designers hold sessions would force people to play only at very specific days and
times, and maybe the game would be actually played only once or twice. These were
disadvantages noticed in most mobile learning games, like for example Environmen-
tal Detectives17 Mobile Game Quest18, Frequency155019, and Anywhere Somewhere
Everywhere20.

The game was designed to facilitate entry of new players, but also to be complex and
diverse enough to interest old players into coming back. The main way used to make
starting to play as simple and as fast as possible is through what we call Open Map.
The Open Map would display all puzzles ever created for the location the player resides
at the moment. Players should be able to filter this map by tags of interest, for example
display only puzzles relating to history. In the Open Map all puzzles are visible to the
player and are not connected in a predefined route. The player can choose freely how
many puzzles and in which order he wants to play. This makes for a more casual game
experience, but also allows the player to experience the game immediately, and have a
short or long game depending on how much available time she has.

The game experience can also be longer and complex through the Story Maps. The
Story Maps have, in contrast to the Open Maps, connected puzzles with a predefined,
closed circuit. Although the entry-point into the story is depending on the position of the
player in the beginning, the amount of puzzles in a certain mission is always the same
and they are played in a circuit. The puzzles are connected by a story that is revealed
while completing the puzzles on that map. Players will navigate through the Story Maps
by following the clues that will be given by a NPC. A Story Maps can contain several
Missions, each with a different character. All characters have to be played to finish
the whole story, but with each mission a part of the story will be completed, missions
can therefore be played independently and can be stopped and restarted at any time.
The Story Maps create an experience that connects the player to the location, and in
the case of the map created as an example by our team, to Bremen’s history. Story
Maps require more time and dedications from players, but also compensates them with
a more meaningful and complete experience.

17http://education.mit.edu/ar/ed.html
18http://www.waag.org/project/gamequest
19http://www.waag.org/project/frequentie
20http://www.mrl.nott.ac.uk/~hms/AnywhereSomewhereEverywhere.html

26

2.3. Collaboration Concept21

21Nesrin Abdelrazik, Alexander Tyapkov

27

Besides single player mode a concept for multiplayer mode was developed for the
mobile game Streetdroids. In this part of the game the group focused on creating a col-
laborative gaming experience where content and communication are blended in order
to support the social interaction between the players. The following chapter reviews the
idea of the collaborative puzzle and presents an example of how the puzzle could look
like, but first the current state of collaborative games will be presented.

2.3.1. Current state of collaborative games

In recent years the number of mobile devices, such as mobile phones and PDA’s in-
creases dramatically. The manufactures investigating new markets are proposing so-
lutions with wider functionality. Indisputably the physical functionality of the mobile de-
vices should be supported by a variety of software allowing users to perform almost
all the necessary operations. One of the most profitable types of software can be con-
sidered to be games. To help developers profit from their applications the majority of
mobile platform’s owners provide access to the Internet markets where programmers
can sell their works. From the rapid development of the technology – in terms of the
decrease of the mobile devices’ size, deployment of diverse sensors and methods of
communication between devices as well as a simplification of game marketing mecha-
nisms – one could expect an increase in the number of games in which users should
interact with it others. However, the number of collaborative games is negligibly small.
Even more if one consider educational collaborative mobile games, then the number of
such applications tends to zero (Zagal et al., 2006). Nevertheless games are appre-
ciated to be important and enjoyable means of education. Playing game people find
more about their skills and limitations in a stress-free environment.

The development of collaborative learning games not only needs versatile skills in
programming and design but also appropriate knowledge in educational questions and
psychology. According to the research by José Luis González Sánchez et al. (2009)
there are three ways of interaction during the learning process: competitive, individu-
alistic and cooperative. The majority of current methods and games are based on the
competitive approach, which encourages players to become better by comparing them-
selves to others. However, the research describing student’s interaction states that: “the
vast majority of the research comparing student-student interaction patterns indicates
that they learn more effectively when they work cooperatively ” (González Sánchez
et al., 2009). The same approach can be applied to the learning games and we can
state that players learn more efficiently when they are playing in a group. The research
mentioned above provides the guideline which can be used in our puzzle to make the
game collaborative and learning efficient. This guideline is based on the following defi-
nitions which were later used in the developed collaborative puzzle: positive interdepen-
dence, individual accountability, face-to-face interaction, social skill, and self-analysis of
the group.

Based on the proposed definitions and the guideline to create educational video
games it was decided to mark out the most crucial rules and make up a document. The
aim of this document was to develop the basic framework fitted with examples which

28

should later help in development of an educational collaborative puzzle. According to
the definitions described above it was proposed following:

Positive interdependence
Players should be aware that they are a team, so group success or failure will

represent individual success or failure. In order to achieve that it was proposed to
organize the players into the teams with common attributes to create a group identity.
Moreover after solving the puzzle players should receive a reward which should be
shared with other players. In some cases the creation of the team, either virtually or
physically, is not enough therefore the variety of activities in which players can contribute
something to the group should be proposed. Eventually there should be group and not
individual evaluation of challenge after solving the puzzle and the possibility to compete
against other groups should be offered as well.

Personal accountability
Each player should share his or her knowledge with all the participants and learn

from his or her partner’s contributions. That can be achieved by representing the con-
tribution of each player during the game play or by awarding points to the team when
individual activities are great. Also situations in which one player contributes more than
other should be considered. In this case a balancing mechanism which will propose
more difficult surprising tasks to the leader should be realized.

Face-to-face interaction
The aim of face-to-face interaction is to establish social relations between group

members. This can be achieved when players discuss possible solutions and points of
view, helping other who are finding task or puzzle difficult. Possible solutions which can
be used in developing puzzle can be including of challenges or activities in where all
group members must respond in the same way, forcing team members to decide which
of them solves the challenge. Such implementations in which each player contributes
or solves the part of the puzzle or where the whole team is competing against another
team are also possible.

Social skills
While solving puzzles players should organize themselves, make decisions and

show leadership and conciliation abilities. In order to achieve it the developed puzzle
should allow establishing a leader role which the group members play in turns. The
leader can manage the work by assigning members to a task, giving advice, helping
the partners in difficulties. The logic of the puzzle can give feedback to other group
members to establish discussions and social relations or show the problem on a device
so that the device owner will not be allowed to solve it but must explain the problem to
the rest of the team members.

29

Self-analysis of the group
The group of players, organized virtually or physically, must self-analyze itself to

discover whether the found solution is effective and the targets of the puzzle are being
achieved. This can be done if players are able to see the statistics and analyze which
members succeed in the puzzle and which of them need help from the team. The com-
petition against other groups can also show not only the success of one team member,
but the progress of the whole team. After the document which gathers key requirements
was done the project team prioritized them and began to compose the mechanics of the
collaborative puzzle; keeping in mind the existing game structure and design as well as
time limitation.

2.3.2. Collaborative puzzle

2.3.2.1. The general idea of the collaborative puzzle

The idea in this puzzle is to create a puzzle that supports communication and collabo-
ration among the players. A number of players meet face to face in a specific meeting
point. Here they receive a puzzle which they have to solve together. The team is not
being told exactly how the puzzle should be solved. They are given a list with different
smaller tasks and they have to discuss which tasks on the list they think should be done
to solve the puzzle and which one should not be done.

All the tasks on the task list ask the player to go to a specific place and get something
and come back to the meeting point. After the players have done the tasks, they will
see if the tasks that they chose to do have really solved the puzzle or not. If they have
chosen the right tasks and solved the puzzle they all win a special item, if not they all
lose. After the collaborative puzzle, players can continue their own mission.

2.3.2.2. Puzzle mechanic

The puzzle mechanics was made up as a separate document describing the flow of
the puzzle from player’s point of view. Each step of the algorithms was supplied with
priority showing how important is the realization of this step; involved parts, describing
whether client logic, server logic or client-server communication are involved into the
step. Additionally each step has attached screen from the developed prototype what
simplify the understanding of the puzzle.

As the general flow of the game in which the player solves the puzzles was already
described above, here the puzzle will be described more detailed. To understand the
mechanics of collaborative puzzle written below it is obligatory to read the previous
sections explaining the general idea and structure of the game. Also the full description
of the puzzle can be found in puzzle mechanics document and collaborative prototype.

The player going from one puzzle location to another will be interrupted by a notifica-
tion if he is within a certain distant to the collaborative puzzle. A Non Playable Character
(NPC) pops up on the player’s screen and proposes him to participate in the collabora-
tive puzzle. It is up to the user to accept the invitation or to continue playing the started

30

mission. If the user is interested in the collaborative puzzle, where he should interact
with other players, he will receive all the necessary information about the place to go
and meet with a future team. After arriving to the place in appropriate time the player
joins the puzzle and meets the other participants, which helps to organize the team and
break the ice between participants. After all team members are at the start location the
non-playable character will confront them with a problem which they have to solve. To
solve the problem they have to choose between smaller tasks to do on a task list. They
can discuss and decide who will take which task and begin solving the puzzle. Gener-
ally for every task each player should walk from one physical location to another and
bring one virtual item to solve the problem. The virtual items as well as locations differ
depending on the puzzle’s content. The aim of the players is to choose which items
are the most necessary in the current situation, bring them to the start location of the
puzzle and solve the problem using them. If the combination of the items which were
brought to the start point is correct all the players get a special item as a reward, if not
they all lose. Afterwards the collaborative puzzle should be considered to be finished
and players can continue playing their own missions.

Later a developed design example will be shown to illustrate the puzzle mechanics.
While developing the puzzle mechanics the team members succeed in deployment of
most of the crucial elements for making the game collaborative, which were described
in the beginning of the paper. Nevertheless the implementation of some of the elements
is still under the question due to some of the results of the user evaluation.

2.3.2.3. Puzzle technical details

The implementation of the collaborative puzzle has begun from the diagram describing
the communication process between the client and server, see Figure 2.1. According
to the architecture used in the project the server cannot request the information from
the client. Therefore the client should continuously send the information about its loca-
tion to the server. It needs additional programming and reorganization of the structure
on the mobile part while existing puzzles don not need continuous data transfer. Also
comparing to the developed puzzles it was proposed to split the algorithm of the com-
munication into three steps. The first step is responsible for defining if the player is
situated in the area of the collaborative puzzle and can accept the notification; the sec-
ond requests the collaborative puzzle data; and eventually on the third step it should be
checked whether puzzle is solved or not. Previously after receiving the puzzle data the
mobile client could reason independently about the rightness of the solution, but after
involving more players this function should be transferred on the server side. Future
work can include the realization of the proposed algorithms as well as reorganizing the
developed puzzle structure used on the mobile side. The server side also needs labo-
rious work especially while creating the logic of the puzzle which involves multimode
communication.

31

Figure 2.1.: Diagram showing data exchange between client and server sides.

2.3.2.4. Design

The collaborative puzzle is a part of the whole game so there was no need to design
everything new. To keep the same style and design like the single-mode puzzles many
elements from the single mode where used in the collaborative puzzle. Of course for the
content of the first example “Roland on fire” many new elements needed to be designed,
but for the puzzle in general only two new elements had to be designed. The first one
is a person symbol that illustrates how many players have arrived to the meeting point
and how many are still missing.

On the screen (Figure 2.2) the player can see the number of players needed for the
puzzle though the number of persons on the screen. The green person show players
who have arrived to the meeting point and the grey person shows the players that are
missing.

The second element that had to be designed was the task list (Figure 2.3). To make
it easy for the player to understand the tasks the task list was made very simple with
sentences one after the other. In the end of each sentence there is a little checkbox for
the players to choose a task.

2.3.3. Example: Roland on Fire

In this chapter an example for how the collaborative puzzle could look like will be pre-
sented. The content of this collaborative puzzle is connected to the mission Old City of

32

Figure 2.2.: Person symbol

Figure 2.3.: Task list

Bremen. It makes the player familiar with a historical event in the 1400 century where
the wood Roland statue was burned.

The example here is only a rough explanation, because a detailed explanation with
all screens would be too long. In order to get the notification about the game, the player
should be on the way from the previous finished puzzle to the next one. If the player is
within 300 meters from the collaborative puzzle she will receive this notification telling
her about the collaborative puzzle (Figure 2.4).

Player can either accept it or refuse it. If the player refuses to play the puzzle he
simply continues his own mission, but if the player accepts he will be asked to go to a
meeting point. In this example the player has to go to the Roland statue on the market
square in the city to meet the rest of his team.

When the player has arrived to the Roland Statue she can see how many players
are there and how many still need to come. This information helps her find her team
members. In this example four players are needed for the puzzle, two of them have
arrived and two still need to come (Figure 2.5).

After all players have arrived the puzzle begins. In the beginning of the puzzle the
players see a screen with the Roland statue burning. Then the NPC pops up on the

33

Figure 2.4.: Notification

Figure 2.5.: Meeting point found.

screen and tells the back-story of this event and explains the problem that the team has
to solve. Then the players must put the fire out and save the Roland (Figures 2.6 and
2.7).

Figure 2.6.: Puzzle explanation 1

34

Figure 2.7.: Puzzle explanation 2

After this explanation a list of tasks which the players can do to put the fire out will be
showed. Each player selects the task that she wants to do by choosing the checkbox
next to the task (Figure 2.8).

Figure 2.8.: Task list

The NPC explains the player where to go and how to get the item. When the player
arrives to the right place she receives an item. In this example the player chooses to
get a buck of water from the Schlachte to put the fire out (Figure 2.9). It is then possible
to get information about the Schlachte or to skip this information and go back to the
meeting point (Figure 2.10).

35

Figure 2.9.: Item found

Figure 2.10.: Information about Schlachte

When the player comes back to the meeting point she can use the bucket of water to
put the fire out (Figure 2.11).

Figure 2.11.: Use item

If the item was useful the fire becomes smaller, if not, it does not change. In this

36

example the bucket of water helped putting the fire out. The player can then choose
another task from the list or wait for the rest of the team to come.

After all the players are back with the items they will see if the items all together put
the fire out and saved Roland or not. In this example the items put the fire out and
Roland was saved (Figure 2.12).

Figure 2.12.: Won the puzzle.

The team members all win a little Roland statue followed with some information about
it (Figure 2.13).

Figure 2.13.: Reward.

The collaborative puzzle ends here. After that the players can continue their own
mission and play single-mode puzzles.

2.3.4. Final Considerations

The development of the collaborative puzzle includes interdisciplinary fields of study
such as psychology and pedagogy together with programming and design. In the

37

preparatory steps towards the implementation of such puzzle the appropriate research
in the field of collaborative games creation was done. It allowed understanding the most
important elements which make any game collaborative and use them later during the
design phase. During the design phase the necessary algorithm was formed explaining
step-by-step user’s actions and the logic of the puzzle which should be programmed
on the server side. Additionally the clickable prototype was drawn using available free
web tools. The developed prototype offers a common ground both for designers and
programmers and simplifies further work. In spite of the design phase being finished
the technical implementation has not yet been started. Proposed way of server-client
communication and the logic algorithm should simplify programmer’s work but does not
exclude possible difficulties. These difficulties can influence some steps of the algo-
rithm but nevertheless will not change it drastically. The general idea of a collaborative
puzzle was proposed to the testers during the evaluation phase and, although the idea
of meeting face-to-face with other players generated some concerns, it was overall well
appreciated which proves its potential.

38

2.4. Learning Orientation 22

22Nesrin Abdelrazik, Jana Wedekind

39

“Mobile applications can vary continuously because of changing circum-
stances and different user needs (Tarasewich, 2003). The object of mo-
bile learning design is inseparable from the design, the context or activity of
use.” (Uden, 2007)

One of our research questions when defining the concept of our project was: How can
learning be integrated in a meaningful way and in such a manner that it will be uncon-
sciously for the player? The most prominent theory that we used to approach this prob-
lem was the Activity Theory, which will be described in detail later. Further, the learning
objectives will be named as well as the process of production will be highlighted. The
structure is:

• Learning in Games

• Five levels of learning

– Learning theories

– Why do we need learning objectives?

• Learning Objectives

– General learning objectives

– Concrete learning objectives

2.4.1. Learning in games

In order to define the learning objectives, it was very helpful to research on how play-
ers learn in games. This helped us defining learning objectives that are interesting for
the player and in the same time effective in the learning process. The main factor for
effective learning is the motivation. That is why our first question was: “What motivates
young people to play computer games?” When they were asked this question these
were the qualities that were mentioned in interviews: “nice presentation”, “good story-
telling”, “things happen”, “I like competition”, “I like action”, “I can test my skills”, “I can
be somebody else” (Pivec et al., 2004).

From these statements we could conclude that the ability of games to engage and
motivate player is directly related to the design and the quality of the content of the
game. The challenge in our game was to create a high quality game that in the same
time integrates learning. According to Prensky (Prensky and Thiagarajan, 2007) learn-
ing occurs over five levels in video and computer games.

2.4.1.1. Five levels of learning

Level 1: Learning How
The basic thing that a player learns from a game is how to do something. The skills

that the player learns can be defined from the beginning in the learning objectives,

40

but sometimes they may extend far beyond the context of the original application. For
example in our game the player can use a compass to find a specific place. In the
original context it is only a tool, but in practice the player will learn how to use it.

Level 2: Learning What
In the second level the player learns what he or she is going to do. The player

here learns the rules of the game needed to play successfully. The nature of computer
games provides for a repeated “trial and error”, because it is faster even by complex
rules. The rules in our game are designed to be easily understood by the player. This
allows the player to get started with the game fast. In this level the learning outcome in
our game will not be very high.

Level 3: Learning Why
Level 3 deals with the particular strategies and tactics that the player develops

while playing. In multiplayer games one of the strategies is to understand, negotiate
and deal with other players. Since our game is supposed to be collaborative, it will
contain puzzles where a player can collaborate with another player if they are in the
same area in order to achieve better results. This is one of the strategies that the player
can use in our game to complete the game successfully.

Level 4: Learning Where
In this level the player learns about the world in which the game is set. Mostly it

reflects the values and culture of its developer. In our game this level of learning is
very apparent, because the maps that are developed in the game reflect the world of
its creator. The first map that the team created is about the history of the city Bremen.
This map reflects the world of the team. Since most of them are exchange students
and new in Bremen they are interested in the history of Bremen.

Level 5: Learning When/Whether In the last level of learning
Prensky considers how games influence the player to make value-based decisions

of right and wrong in the real-world environment. At the current status of our game this
sort of learning is not very presented, because the content of our map only gives facts
that do not present any specific views that could influence the player’s decisions. But
maybe some of the maps that will be developed by other players in the future may have
more of this sort of learning.

2.4.2. Learning theories

When developing a learning game it is important to follow a learning theory that pro-
vides you with conceptual framework. The three main learning theories are behavior-
ism, cognitivism and constructivism. The theory of Behaviorism focuses on objectively
observable behaviors (Phillips and Soltis). It defines learning as nothing more than the

41

gaining of new behavior. Cognitivism on the other hand looks beyond behavior to ex-
plain brain-based learning. “The cognitivist paradigm essentially argues that the ’black
box’ of the mind should be opened and understood. The learner is viewed as an infor-
mation processor (like a computer).” (LearningTheoriesKnowledgebase, 2010) Last we
have constructivism who states that humans learn and construct knowledge out of their
own experiences. “The learner is an information constructor. People actively construct
or create their own subjective representations of objective reality.” (LearningTheories-
Knowledgebase, 2010) So the learning here is a process where the learner actively
creates new ideas. In our game StreetDroids we chose to follow the theory of con-
structivism. The game encourages the player to explore different places by physically
walking around and solving puzzles on the mobile device. Players will get some in-
formation about a place which she has to find. This is the first step where she learns
something about the place. After finding the place, she has to solve a puzzle that also
contains some interesting facts about the place. To support the player by solving the
puzzles the game offers several hints. According to constructivism learners are moti-
vated to learn when they experience successful completion of challenging tasks. That is
what these hints are for. They help the player to successfully complete the challenging
puzzle and motivate him or her to continue the game.

The theory of constructivism also calls for collaboration among learners to support
the learning process. In StreetDroids we developed some puzzles that encourage the
player to collaborate with other players. By solving these puzzles, the player will get
some special rewards.

2.4.3. Why do we need learning objectives?

A successful game needs clear goals for the creator as well as for the player. For that
we had to define the learning objectives of our game from the beginning of our con-
cept design. “Learning objectives are statements that describe significant and essen-
tial learning that learners have achieved.” (TeachingSupportServices, 2003). In other
words, learning objectives describe what the player will know and what he or she will be
able to do after playing our game. They basically answer to two questions: Why should
the player play our game? and What can the player learn from our game?

“Learning objectives refer to observable and measurable: knowledge, skills, atti-
tudes.” (TeachingSupportServices, 2003). In the first scenario of StreetDroids, the
Old City of Bremen, the knowledge that the player will learn are the historical facts that
will be integrated in the game. The skills that will be achieved are for example: learning
how to play with a mobile device and how to use a compass. Through the collaboration
with other players the player may acquire new social attitudes.

When writing the learning objectives we tried to use the acronym SMART (Teaching-
SupportServices, 2003) which stands for Specific, Measurable, Achievable, Relevant,
Time-based. Of course it was not always possible to define the learning objective so
specific and exact like the SMART suggest, but it was good to keep these words in mind
while were writing learning objectives.

42

2.4.4. Learning Objectives

2.4.4.1. General learning objectives

StreetDroids is designed to be a context-aware mobile learning game, which means
that by playing the game learning objectives can be achieved. The modular setup of
the core mechanics will allow the users to develop their own game ideas and make them
available to other players as missions. That also means that it can not be foreseen if
everyone will try to include learning objectives within a mission. It is possible though,
as will be demonstrated with the map for the city of Bremen, to include learning objec-
tives in a mission (see also 2.4.4.2 Concrete Learning Objectives). Offering example
missions right from the beginning will help the players to understand what is possible
with the given concept.

Mobile Learning (m-learning) (Sharples, 2007) is part of e-learning and therefore we
can fall back on some of the learning paradigms presented in e-learning. Nevertheless
there are some features specific to m-learning, such as the mobility aspect offered by
mobile devices. Learning with mobile devices has a strong focus on the learner (human
centered) and gives them the possibility to learn within a given environment (situated
learning).

In the following the general learning objectives that apply to the whole game me-
chanics and not only to explicit missions are presented. These objectives are defined
as follows23:

1. Players can locate visited places on a map and connect them to the real world.
Further, they can use a compass for navigation.
The game allows the player to learn more about navigation, as he has to find the
location for the puzzles. He can use a compass in order to facilitate the search,
but therefore he needs to understand the concept of a compass.

2. Players are enhancing their soft skills.*
Soft skills are trained by demanding skills from the player as problem solving,
communication, working in groups, and so on. This is important as nowadays
these skills are gaining more and more value as job entry requirements.

3. Players are improving their communication skills.*
It is important to learn to communicate and work with others in today’s society as
never before. All is about teamwork and how one can interact in these situations.
The game is trying to help the player to learn to communicate with other peo-
ple, even if she does not know them well, for example by creating the community,
where the players can exchange information. Conversation(al) theory [Sharples,
2005] describes that the process of sharing information, of having a continuous
communication, helps the learner to achieve a better understanding of the learn-
ing objectives.

23The * marked bullets are adapted from (Klopfer, 2008).

43

4. The game allows players to collaborate with each other.*
The game mechanics are open enough to allow different ways of playing the
game. If, for example, a map for a school class is created, the class can be
divided into teams, that play against each other. Within a team, the players can
help and support each other in the best possible way. They can exchange their
knowledge in order to achieve their common goal, to win the game, as fast as
possible.

5. The game is context-aware, which allows the player to implement scenarios for
different locations and context.
“Many scholars agree that learning is most effective when it takes place as a
collaborative rather than an isolated activity and when it takes place in a context
relevant to the learner.” (Kofod-Petersen and Petersen, 2008)
Designed as a community game that can be expanded by the players themselves,
the location of the game is not fixed by the game mechanics. This change of
location allows the players to implement the game in different context that are
meaningful for their story or puzzles. The learning objectives therefore can be
combined with relevant location and context, as can be seen with the exemplary
map for the history of Bremen. The learning actually takes place at the location
that is asked for. If for instance the player is supposed to learn that the town hall
of Bremen is on the list of UNESCO World Heritage Sites he stands in front of the
town hall and can examine it. Thereby he has the chance not only to solve the
puzzle, but to experience the building on its own. Different to a picture in a book
the learner can form his own view by discovering the building.

6. The game encourages players to create their own maps and characters (user-
generated content) / The game encourages players to be an active part of the
community.
Players receive the possibility to become an active part of the community by cre-
ating their own maps and characters, to enforce the identification with the game,
respectively the community. Creativity is encouraged thereby, as well as the con-
tention with other players.

7. The game improves the player’s ability to solve problems.*
By offering different puzzle types to the players, their ability to solve a problem is
improved. Further, a puzzle type can be applied to different context, as mentioned
above, therefore the player is encouraged to apply her knowledge of solving a type
of puzzle to a different scenario.

8. Players are qualified to work in groups.*
Players are encouraged to communicate with each other within the game. Al-
though not being a requirement to the game itself, this allows players to share
their knowledge and helps them solving problems.

9. Players are applying inductive reasoning.*
The players develop skills to solve complex problems in a non-linear way and also

44

some of them require a deep understanding of systems and processes.

10. Players are applying sustained reasoning.*
This objective means, that the game will support to solve problems that are on-
going and use a variety of resources to do so. The player can for instance try to
solve a puzzle by talking to other people, by researching in the Internet, or maybe
fall back on knowledge already gained. Further, it will be possible to save the
game in between and go back to an already started mission.

11. Players are prepared to organize and navigate information structures and evalu-
ate information.*
As mentioned in item 10 already, the learners must collect and evaluate informa-
tion from a variety of sources. This helps them to deepen their understanding of
the task and to support sustainable learning.

2.4.4.2. Concrete learning objectives

The concrete learning objectives apply to specific puzzles in the game. They were
implemented exemplary for the map of the city of Bremen. The learning objectives are
based mainly on the activity theory, that will be explained with the help of examples
from the game.

“Activity Theory provides a theoretical language for looking at how an educational
game or resource mediates players’ understandings of other phenomena while ac-
knowledging the social and cultural contexts in which game play is situated.” (Squire,
2006) A theory which has a strong focus on the context the learning occurs in, as well
as on communication, is activity theory. Originating in the cultural and historical psy-
chology of Vygotsky and Leont’ev, it “includes collective activity, community, rules and
division of labour that denote the situated social context within which collective activities
are carried out.” (Uden, 2007) The five basic principles of activity theory are:

1. Hierarchical structure of activities
“As in situated learning or a constructivist environment, cognition is defined and
shaped by its relation to a given context. This means that we must not only learn
in context, but also by context.” (Snow, 1994) Also Jonassen describes that “In
activity theory, activity is a precursor to learning. Knowing can only be interpreted
in the context of doing.” (Jonassen and Rohrer-Murphy, 1999) Therefore all learn-
ing occurs while actually playing the game. Only with the context of the game the
puzzles make sense and are solvable. Given the example of the map for the Old
City of Bremen this means that a puzzle needs to be solved in a specific location
(context) in order to fulfill the learning objective. This could be for example a puz-
zle located at the St. Petri’s Dom in Bremen, where the objective is to explore the
history of the cathedral by comparing the first cathedral with the current one.
Activities are “(...) consisting of a subject and an object, which are mediated by a
tool. A subject can be an individual or a group, engaged in the activity. An activity

45

is undertaken by a subject using tools to achieve an object (objective), thus trans-
forming it into an outcome.” (Kuutti, 1996) The division of an activity can be seen
in figure 2.14, which is displayed as an Engström’s activity diagram (Uden, 2007).

Figure 2.14.: Structure of an activity

Adapting the shown structure of figure 2.14 in the Engström’s diagram for the
game would have the result seen in figure 2.15.

Figure 2.15.: Game structure in an Engström activity diagram.

Every mission in StreetDroids consists of several puzzles that need to be solved in
order to complete a whole game. In each puzzle the players needs to undertake,
they have to become active. In the game, the mobile device occupies the role of
the mediator respectively the tool, that supports the players. The subject consists
of one or more players, which will use the tool in order to achieve the learning
objectives.

2. Object-orientedness
“This principle specifies the activity theory approach to the environment with which
human beings are interacting. Unlike Piaget and Gibson, activity theorists con-
sider social and cultural properties of the environment to be as objective as physi-
cal, chemical, or biological ones. These properties exist regardless of our feelings
about them.

46

So human beings live in an environment that is meaningful in itself. This environ-
ment consists of entities that combine all kinds of objective features, including the
culturally determined ones, which, in turn, determine the way people act on these
entities.” (Kaptelinin, 1995)

3. Internalization/externalization
“Activities can be either internal or external but they need to be analyzed together
for a proper understanding to be achieved. Internalization relates to the human
being’s ability to imagine, consider alternative approaches to a problem, perform
mental simulations. Externalization transforms an internalized action into an ex-
ternal one.” (Hardy, n.d.)
Taking as an example the puzzle about the 15 windmills surrounding Old Bremen.
The learning objective is to understand that surrounding the city with windmills
used to be a tradition in the area. After solving the puzzle, an old map of Bremen
is overlaid by the new one to display the changes in size and shape that Bremen
has gone through. In order to solve the puzzle the player has to play through
several scenarios (internally), before he decides which placement of the mills will
be correct. By placing the windmills on the display, the internal chosen scenario
gets externalized.

4. Mediation
“Human activity is mediated by artefacts – tools both internal and external. These
tools may be signs, language, instruments or machines.” (Hardy, n.d.)
As mentioned before, the mobile device occupies the role of the mediator, that
supports the player in achieving her goals and therefore reaching the learning
objectives. It provides the necessary information to solve the puzzles and play
the game. Further, in certain situations the player is able to contact other nearby
players with the help of the mobile device.

5. Development
“According to activity theory, to understand a phenomenon means to know how it
developed into its existing form. The principle of development gives an opportunity
to conduct thorough, scientific analysis of complex phenomena while avoiding
mechanistic oversimplifications.” (Kaptelinin, 1995)

As can be seen, the activity theory is very appropriate for the implementation of the
game’s learning objectives. Its focus on the learner being an active part fits better than
other traditional learning theories that are more directed towards computer-mediated
learning. Further, it takes into account the changing context of the game, which is one
of the main requirements.

47

2.5. Content Choice and Use24

24Dema El-Masri, Catalina Payán

48

The applied content to StreetDroids is, as explained later in detail: the history of old
Bremen. Yet other contents can be applied ranging from sports to shopping centers and
shops, based on the location, environment and the availability of potential content that
can be used. A sports-related game could be for example locating football stadiums,
tennis courts, sport museums, sports bars, or other possibilities and playing different
challenges in these locations. Each challenge leading to another until the mission is
solved. The main idea of the game is to solve a number of puzzles in one mission at
least, each puzzle then leading the player with location-related clues to the next location
and so on. This customizable content creation function is facilitated by the web end,
explained in more detail in section 2.2.6.2of the report. The web platform of Street-
Droids presents what we like to call as a “toolbox” for the creation of further content.
There are editors for the puzzles, the characters, and the missions. Each one of these
editors allows players to upload any content they want, thus creating customized puz-
zles, characters, and missions, which includes customizing everything related to the
puzzle of choice as items to be collected after succeeding in the puzzle. This aspect of
creating the players’ own content in the game is also recognized by game developers.
Cary Rosenzweig, president and CEO of IMVU in (Nutt and Kumar, 2008) states, “Of
most people who create items, most of them create one or two items. People do what
they do mostly for affirmation; because being a creator is cool and they like the status
– it’s their choice if they want to turn the credits to cash.” He also goes on to say that
“Amateurs are sometimes better than professionals because they’re closer to the truth,
to the social reality”. For such reasons, it is an advantage to have users participate in
the content creation of games. It enriches the game experience by offering the player
with many choices of content, and also offering an opportunity for the player to make
his own content.

2.5.1. History as Content

The choice of content was not a simple one. The game is a location-aware game, and
therefore can be played almost anywhere and use content available from the surround-
ing environment. Despite the vast amount of potential contents that can be applied to
the game, the team decided to apply content from our nearby surrounding environment,
that being the Old City of Bremen. The team resides in this city which is a rich city in
its history and importance in Germany in general, and in North Germany specifically.
Development of games also reflects interest in the surrounding culture, and according
to the fourth level of learning by (Prensky and Thiagarajan, 2007), games mostly reflect
the values and culture of its developer. Research was conducted for that reason on
the numerous historical buildings, statues and objects in the city to which the game’s
concept could be applied, and could be puzzles created. A content team was formed
and designated to do research about the city’s history and apply this content into the
game and the mobile’s context.

Though it is not a traditional learning game, learning aspects can be applied to it.
This is something we sought to achieve when applying the content of Bremen to the
game. The content presented us with a good opportunity for mixing game play and

49

entertainment, together they can be used as a trigger for history education. Learning
history through a game makes it a lot less likely to be forgotten than from a book (Blecic
et al., 2002). Presenting information in such a way makes learning a more engaging
process; also the mobile device in use is a device most people are accustomed to and
does not require special skills to operate, especially amongst young adults.

To understand history in a better manner the learner usually has to imagine how the
world was hundreds of years ago. This process is not easy just by being based on facts
and dates from books, as it is in most school systems -where the past is seen through
the lens of the present. Introducing a tool as the mobile device which allows for a more
personal way of approaching knowledge, as well as animations, Role Playing Games
(RPG), illustrations, audio and video related information, the process of learning will
become easier.

Blecic et al.(Blecic et al., 2002)stated the main advantages of teaching/learning his-
tory through play, these advantages can also be found in StreetDroids, and are ex-
plained in the following. Play is known to be fun, and what is learnt through fun activities
is less likely to be forgotten than what is learnt through traditional means. This is an
aspect we incorporated in the game and content design, through designing the content
in a more-approaching and engaging manner. An example of that could be challenge;
many players see more fun in a game when it challenges their skills and information
-being a learning game, or having learning aspects applied to it- and that plays a posi-
tive role in building up elements of fun, enjoyment and challenge. Play usually requires
different skills to be deployed. In the case at hand such skills include coordination, pre-
cision, historical knowledge, and the use of the technology. The project started with
an aim to have a collaboration part, where players can compete or collaborate, for time
and technological constraints this aim has not been yet fulfilled, but the concept of it
was developed. Nevertheless if developed in the future, collaboration and other skills
as conflict management will be encouraged in game play.

According to our research, only few examples exist of implementing history education
via mobile devices in a game-based learning and context-aware manner. The project
Frequentie 1550 (Akkerman et al., 2008) developed by the Waag society is an example.
The game’s purpose is to teach secondary-school students about the history of Ams-
terdam by walking through it, completing game assignments and communicating with
other team players.

Another project is Una giornata di Gaio ad Egnathia (Gaius’ Day in Egnathia). The
paper version of this game showed that playing historical roles motivates students. This
game is structured as a scavenger hunt game, with the players solving the case, explor-
ing the area and discovering the hidden secrets in Egnathia, an ancient city in Apulia
the southern region of Italy which dates back around 1000 BC (Ardito et al., 2007).

Both projects have been tested with many school students and produced positive
results among students and teachers. The game developed in the MobileHive project is
very similar to the examples above, because it uses history as content, mobile devices
as tools, location-awareness, it applies learning aspects, and players play historical
roles in it.

Bremen’s history goes back approximately 900 BC, which covers a lot of historical

50

events. In our history research we discovered that some of the interesting places have
gone through many different incidents and its attributes have been changed several
times in history. For example the church St. Peters Dom, goes back to the year 810
(Dappen, 2008), and has been rebuilt several times changing its form and making it
much different than it was in the past. With such an example the goal would be to
clarify these changes and make them evident to the player in an engaging manner.

In order to cover the main incidents in the city’s history and maximizing the potential
learning outcome, the narrative concept of time traveling was developed. We divided
the history in four periods, (9-12 centuries; 13-16 centuries; 17-19 centuries; and 19-
20 centuries) and for each period of time we developed a route that contains 5 to 8
historical places for the player to visit. Each route will have a guiding character that
helps the player though the puzzles and the travel. The player can choose from these
four characters, each one has been a famous figure from the past in Bremen and has
played an important role in shaping its history. The characters combined cover the
whole history of the city, and each character takes the player through a route of historical
places where the user will receive challenges to solve puzzles in different locations
related to the character’s time era. Towards the second semester of the project, the
content’s structure was changed. Instead of having four time eras with four characters,
eras were combined resulting in two missions. The first two eras were combined to
become one mission, as the last two became another mission as well. This was done
for different reasons, such as having faced a number of technological difficulties and
time constraints during that period. Making these changes allowed the team to focus
on solving these technological problems and delivering on time, rather than having an
excess amount of content not applied, therefore the content had to decrease in size.

2.5.2. Applying content to the puzzles

Mobile social games use the interactions made between players and their relationship
with the physical world to provide an entertaining experience (Casey et al., 2007), and
at the same time they reveal how users socially interact when they use the devices.
StreetDroids is a task-based play game, in which the players can create their own con-
tent in a non-linear manner, developing a whole new experience, with players exploring
and making use of their environment and its attributes. This content is used to promote
what is called a mobile “information encounters”. A distribution of interactive multimedia
digital content designed for social networking and community content sharing, as well
as for entertainment and commerce (Churchill et al., 2004).

As it is explained above StreetDroids is a mobile game where the users can create
and apply whatever content they want in order to explore or interact with their surround-
ings, because the game can be customized the user can interact with almost every
feature the game can offer, including maps, locations, missions, puzzles hints, rewards
and characters.

However there are some restrictions and guides in order to apply the content, be-
cause not every content its 100% suitable to every feature of the game.

51

Location:
Because it is a GPS based game, StreetDroids can only be played outdoors, there-

fore it is recommended to play in an open space. In addition the battery life is another
component the user has to keep in mind; as a result it is better to have the locations for
the puzzles near but not next to each other because the GPS is not precise enough and
the application can mix the locations and display a specific puzzle in a wrong location.

Location hints:
The location hints are the ones leading the player to the next puzzle in a new

location. It is similar to a scavenger hunt; after the player finishes a puzzle he must go
in the direction of a given hint which will lead him to the next task. These hints require
the player to pay attention to his surroundings. As these hints are usually related to
buildings, streets, and sights it is recommended for the content creator to know the
place where the puzzle is going to be placed because he will have to explain in a
narrative way where to find the next location.

Puzzles:
Puzzles are the challenges the player will go through once he arrives to a specific

location of the map. The puzzles developed for the StreetDroids game can be reused
by applying different content every time. Despite the fact that the puzzles are made for
the android mobile device they are quite diverse, making use of the many capabilities
of the device and implementing many puzzle concepts most potential users are familiar
with. Nevertheless the puzzles have to cope with the android properties, screen size,
interaction type, and network connection.

The challenge of developing puzzle content is to combine entertaining challenging
puzzles with interesting facts, and at the same time consider the capabilities of the
technology in this case the android mobile device. At the moment the StreetDroids
game has three puzzles available:

• Hotspot puzzle:
In this puzzle the player is presented with a location task and by touching the
screen she has to find in an specific object in the image. It is recommended on
this puzzle to look for tasks or images that have many possibilities for the user
to click on, it is important for the image to be as wide as possible that means
general view without close ups, etc, in order to make finding the correct object
more challenging. However it is also advisable to pick objects as big as the finger
print because of the small screen of the device the small objects can be hard to
touch and find.

• Image recognition puzzle:
In this puzzle the player is presented with a given picture with a blank space on it,
and he has to fill in the missing piece by taking a picture with the mobile camera.
In this puzzle the given picture for the task has to be taken by the creator of the
puzzle with the android camera, in order for the player to take the exact same

52

image, it is also important to pick an image not far away from the player because
of the zoom restrictions. The selected image for the content of the puzzle must
be easy to crop and it is advisable to only take a detail of the entire object, in that
way the puzzle turns into a more challenging experience for the player.

• Drag and drop puzzle:
For this puzzle the player has to recreate a picture with some given parts. This is
a variation of a jigsaw puzzle, the player will find the pieces of the image in the top
of the screen and she has to drag and drop them in the correct location. For this
puzzle it is recommended to work with an image that can be split in many parts,
therefore it is better to work with detailed images like a façade where all the part
are looking similar and it is difficult to tell the difference between them, as a result
the player has to reconstruct the image according to what she is looking at nearby
her location.

Puzzle hints:
Sometimes the players cannot solve the puzzle, for this reason, and to ensure that

the player can find the next location, hints are given when the player does not succeed
for the first, second, and third attempt to finish the challenge. These clues do not only
help the player finishing the puzzle but also draw the player’s attention to the many
details surrounding the challenge. For the puzzle hints it is recommended to be as
specific as possible without giving the answer, otherwise the player will just look for the
hints as solutions without paying attention to the challenge.

Rewards (items):
At the end of every puzzle the player will be presented with an item as a reward,

that confirms of her success in the given task, this reward can be something associated
with the specific puzzle or with the entire mission.

53

2.6. Documentation 25

25Cristina Botta, Jana Wedekind

54

2.6.1. Documentation

Every project needs documentation. Usually it is not the most beloved part of a project,
nevertheless it is necessary and helpful. For the development of our game three things
were found crucial: To model a vision of what we want to achieve with the master
project, to define the game mechanics, which are the core of each game, and to have a
way of organizing features and priorities. Therefore three documents were prepared in
order to support all project members in internalizing the goals of the project and achieve
a common understanding of the game.

2.6.1.1. Vision Document

For the project a vision document was needed, in order to define the most important
topics and the vocabulary needed in the development of the project. The most com-
mon vision documents originate from the Rational Unified Process (RUP)26. The RUP
is an iterative software development process developed by IBM. It is more like a frame-
work that can be adapted to the different requirements in software projects. It provides
process models, role descriptions, document templates, and software (e.g. Rational
ClearQuest, Rational Rose, and more) for software development. The vision document
in the RUP is a general vision of the core project’s requirements, key features, and
main constraints. It is used to achieve a common understanding of project goals be-
tween all project members (project managers, customer, developers, and designers). In
the RUP documentation the vision is described as follows: “Defines the stakeholders27

view of the product to be developed, specified in terms of the stakeholders key needs
and features. Containing an outline of the envisioned core requirements, it provides the
contractual basis for the more detailed technical requirements.” (RUP, 2003b) Usually
the vision is directed also to the customer/stakeholder of the project. As we did not
have them, we focused on the description of our project in order to develop a common
understanding of what we wanted to achieve in the project and how we wanted to do
it. It was used as the main reference for all team members in order to reflect on our
goals for the end of the project. The document helped to build a common language
between team members to refer to the game concepts. Further, the vision helped us
to present our idea to possible customers or external persons that were not involved in
the development process. Using the vision, we described the state-of-the-art and then
proposed how we wanted to differentiate ourselves from it: what were the innovative
parts in our game? Moreover, a formal description of the technical requirements was
included.

26http://www-01.ibm.com/software/awdtools/rup/
27“The Stakeholder role is responsible for representing an interest group whose needs must be satisfied

by the project. The role may be played by anyone who is (or potentially will be) materially affected by
the outcome of the project.” (RUP, 2003a)

55

2.6.1.2. Game Mechanics Document

“A game mechanic is simply any part of the rule system of a game that covers one, and
only one, possible kind of interaction that takes place during the game, be it general or
specific. A game may consist of several mechanics, and a mechanic may be a part of
many games.” (Lundgren and Björk, 2004)

The purpose of the game mechanics document was to define the game mechan-
ics and make them accessible to the whole project group. Within the document it was
described how the game will work and the approach taken to achieve meaningful game-
play. By writing down the rules of the game misunderstandings and contradictions can
be discovered and solved. The document itself was also subject of an iterative process,
as rules were discussed, changed and if necessary dismissed again throughout the
whole conception phase.

2.6.1.3. Product Backlog

To help organize the tasks and priorities in the project a document called Product Back-
log was used. This document is originally part of Scrum28, which is an iterative, incre-
mental framework for agile software development (Wikipedia, 2010a).

The Product Backlog is the master list of all functionality desired in the product, so it
is a document for the entire project. It contains broad descriptions of the required and
wished features divided by priority (Very High, High, etc.), rough estimates of develop-
ment effort, and value for the project. This document is open and editable, because
as more is learned about the product and its customers, updates and changes will be
made to it during the time of the project.

The Product Owner prioritizes the tasks in the Product Backlog and describes the
top items to the team. The team can then determine together which items can be
completed until the end of the sprint. These estimates help the Product Owner to
suggest a timeline and, to a limited extent, the priorities. Conceptually, the team should
start at the top of the prioritized Product Backlog list and draw a line after the lowest of
the high priority items they feel they can complete. In practice it is not unusual to see
a team select, for example, the top five items and then two items from lower on the list
but that are associated with the initial five. Or if the add user profiles and add tagging
support features have the same business value, the one with the smallest development
effort will probably have higher priority (MountainGoatSoftware).

28Scrum will not be discussed on this report as it was not used in the project.

56

3. The implementation

3.1. Basics

3.1.1. Mobile Platform Selection1

1Alexander Tyapkov

57

The mobile platform plays a significant role in our project, and it influences the further
steps connected to the choice of architecture and programming methods, as well as
work division between the members of the team. According to the concept puzzles are
the core of the game, and can be filled with any appropriate content and be played at
any location. It was clear that the user should have a mobile device. Nevertheless no
additional information was provided, making the choice of the mobile platform difficult.
During the initial phase of the project there were around five platforms present on the
market, each with differences in availability and functionality. Among them are: An-
droid Cupcake developed by Open Handset Alliance, Blackberry OS 4.7 by Blackberry,
iPhone OS 3.0 by Apple, S60 5th edition by Nokia, Windows Mobile 6.5 by Windows
and Palm WebOS proposed by Palm. The goal was to analyze the functionality, avail-
ability, and price of the existing platforms, as well as current trends showing the direction
of the platform’s market development, and eventually choose the mobile platform that
would best fit the the project’s needs.

3.1.1.1. Criteria definition

Before selecting the platform a requirements analysis was performed. This helped to
define the criteria and understand what features of the mobile platforms were the most
important for the realization of the project. These criteria were based on the require-
ments collected from the project’s vision document (section 2.6.1.1).

Input methods
In order to implement a context based game a variety of input methods should

exist. By context, we can broadly understand all the information, which can be important
during the game play and which can influence it. The logic of the game should process
the information from the user’s input or from sensors and check the ways it influences
the application. Almost all modern devices and mobile platforms support a variety of
sensors such as, for instance, GPS receiver, accelerometer and compass, which can
be used to gather data. Indisputably that location of the player is the most widely used
type of context information and has been implemented in thousands of applications. We
also considered the location of the user as a crucial feature which can help to create an
innovative game. Nevertheless we do not exclude other types of sensors such as the
accelerometer, a compass or even a thermometer, which could become the key feature
in a puzzle.

Machine-user interaction
In the vision document and project’s description the communication between play-

ers was defined as a major component of the game. Players can interact in the real
world by speaking and exchanging knowledge, or can communicate through the game
using the proposed collaborative features. The third possibility to consider is when one
device is used by two or more players to solve puzzles or to complete the mission. In
this case players can interact either using the mobile device or by direct communication.

58

All the scenarios of user-machine interaction or even user-user interaction including
a mobile device should be considered in order to make an attractive game. For these
reasons appropriate hardware and software is needed to make the interaction clear for
all the players. Nevertheless it should be noticed that the problem of machine-user
interaction can be solved not only by deployment of innovative methods proposed by
manufactures but also by joint laborious work of programmers and designers.

Team knowledge level
The StreetDroids project is educational and has limited human resources. All the

participating students have versatile academic and programming backgrounds. Inter-
viewing among the programmers showed that the majority has experience in the Java
language. This defined the preferable programming language for the mobile part of the
project, but it did not exclude other programming languages, as project members could
still learn the necessary skills. It just shows that the mobile platform should be chosen
properly and according to the developers’ knowledge level, which in turn can help to
save time for development.

Community and documentation
The existence of a community around the platform project signs that mobile plat-

form is needed and therefore it will be easier to receive support and clarify the problem-
atic questions. Besides, programmers usually share their code snippets and inform the
community about found bugs. This information will help to concentrate on innovative
ideas rather than on implementation and debugging. After publishing the application
and receiving the player’s feedback possible limitations and drawbacks of the game can
be found. In general the presence of a well structured platform documentation and
programmer’s guide is an obligatory condition for the project.

Platform’s future
The mobile platform market is new, and no one can predict what will happen with

a new platform within a year. It could disappear or the producer could find that the plat-
form is not profitable and stop supporting it. These variants could lead to the project’s
cancellation, or it would force the project to migrate to another platform, and conse-
quently the team would have to rewrite the code. It means that attention should be paid
not only to the technical part, but also to questions of the market investigation. The
comparison of platforms should reveal current market leaders and make predictions
about their future.

Market possibilities
Nowadays almost all mobile platform manufactures allow programmers to publish

their applications and sell them via store markets. Usually the minor part of the earn-
ings goes to the manufacturer as a payment for using the market. Nevertheless, the

59

conditions of entering the market vary and should be compared. The comparison de-
fines which companies have application stores and which not, and what the conditions
and possible limitations are.

Attractiveness for the target group
In the previous sections of the report it was highlighted that out primary target

group are students from ages 14 to 20. As a mobile group, students have more time
and freedom to walk unaccompanied around the city and to interact with the community.
In our work it is assumed that young people are more opened to innovation, thus the
new platform with a variety of interaction methods can definitively become one of the
attractive features of the game.

Based on the criteria described above we have begun to compare and analyze exist-
ing mobile platforms.

3.1.1.2. Platform choice

The most important criteria which were marked out from the general list were:

• an easy development start

• the variety of input methods

• the presence of documentation

• the price of the devices

Easy development start means the correspondence of the platform language with the
previous experience of the team. The variety of input methods is what allows the cre-
ation of a rich context application and the receiving of necessary educational knowl-
edge. The presence of a well-structured documentation and a reasonable price of the
devices are also taken into the consideration. These parameters allowed the start of
an investigation of the mobile platform market and comparison of the existing platforms.
The comparison was done according to basic functionality, user interface, core function-
ality and market information. All the compared data was organized in tables, allowing
for an easier overview.

Examining the defined criteria it was concluded that only Android Cupcake and iPhone
OS provide a wide range of input methods necessary for the forthcoming project (Topol-
sky, 2009). The number of these methods varies depending on the device, but almost
all of them are equipped with accelerometer, GPS receiver, compass, and camera, what
allows the implementation of rich context-based applications.

When speaking about machine-user interaction it is necessary to point out Apple as
a leader. They succeeded in the development of easy-to-use, friendly user interfaces.
Other companies also continued developing their ideas and innovations and improv-
ing the usability (RubiconConsulting, 2008). Best practices proposed by manufactures

60

should be considered and used in the project, but that does not mean that the iPhone
should have been chosen as the project’s platform.

Programming languages vary from platform to platform. Referring to the platforms
comparison (Topolsky, 2009) only Android Cupcake and Blackberry allow to program
in Java. The iPhone requires the use of MacOS in order to program in Objective C.
Moreover, ObjectiveC would need additional time to be learned by all members of the
team. From this point of view the Android platform is more advantageous.

Due to many factors market analysts do not predict the failure of some of the consid-
ered platforms in the future. Each company positions their platform differently and have
their own target groups (SkyhookWireless, 2009). By now both, Android and iPhone,
are counted as platforms for youth. Nevertheless, both of them are considered expen-
sive for our target group, a condition that can change after new devices are released on
the market.

At the time the comparison was made all manufactures provided clear documenta-
tion, excluding Palm. Also, the community gathered around the platforms differed. The
attention of the majority of the audience was drawn to the iPhone and Android platforms,
what means also that these platforms have the biggest audience of programmers.

Additionally it is necessary to notice that our project is educational and with no doubt
the popularity of the platform, as well as the market possibilities, are not so important
as for instance the available input methods and programming language. From this point
of view Android Cupcake fits better to our project.

3.1.1.3. Conclusion

After the market research was finished it was decided to use Android as the project’s
platform. This year of platform usage concludes the rightness of the choice. Nowadays
the market presents a variety of mobile devices supporting Android, what shows the
popularity of the platform among users and interest from the manufactures. The plat-
form is relatively cheap and the appearance of new devices decreased the price. The
Android market has already more than 100.000 applications and best conditions to en-
ter the market. Of no small importance is also the fact that our programmers gained the
rich experience of using the features of the Android SDK and the creation of programs
and games for Android.

61

3.1.2. Web Platform Selection2

2Till Hennig

62

The implementation of the web-platform (web-frontend and webservice) needed to
be accomplished in approximately six months. Even though the project spans two
semesters (equaling less than 10 months of effective working time), the entire time
was not available to the developers since conceptual aspects needed to be discussed
first.

For a web-platform of this dimension this is a tight time-plan forcing the students to
use technologies that allow rapid development techniques. An additional challenge is
the fact, that the concept is rather open and flexible in terms of its definition of scope.
The flexibility for letting users contribute multi-faceted content results in a high level of
abstraction for the developers.

These requirements make it nearly impossible to recycle existing web-applications
which have been constructed for building web-communities; the effort for customization
would have caused the students to spend more time trying to understand and change
the code of the original developers instead of coming up with their own solutions and
thus minimizing the academic aspects of the project.

The alternative are so-called frameworks, which the developer Jacob Kaplan-Moss
characterizes as helpers that "operate at a high conceptual level"(Kaplan-Moss, 2009)
allowing developers to focus more on the conceptual fundamentals of what is being built
rather than on trivial implementation details. He goes on by saying that frameworks pro-
vide "much larger building blocks", which he illustrates by comparing the development
of a web-application with the building of a house. Building it from scratch with raw ma-
terials, gives you all the flexibility you could possibly want, but the construction requires
an enormous amount of planing and time. According to Kaplan-Moss, frameworks are
like "factory-build homes", which offer a variety of choices for all kinds of components.
The architect is more restricted because he is forced to choose from a predefined set
of rooms, however most aspects can be customized and the time required for construc-
tion is a fracture of that for building a house from scratch. Continuing the analogy of
Kaplan-Moss, using an existing application would be like moving into a Hotel room: Ev-
erything is furnished and there is no room for expansion, except renting another room.
This would equal to adding a new, independent application for added functionality with
a integration that would leave a lot to be desired. Kaplan-Moss goes on by saying, that
"good frameworks encourage rapid development (...)" and that "It’s no coincidence that
the Age of the Framework is also the Age of Agile. Agile, XP, Scrum, etc. frameworks
are at their best when used in a rapid-iteration style." Rapidly prototyping is possible,
because most of the trivial and repetitive tasks are taken care of by the framework. The
developer can go straight to implementing the core of the application. Components are
are functional at all times and more functionality can be added iteratively as needed.
By not frustrating the developer, the author says that, albeit sounding silly, frameworks
actually make "(...) development fun", which is important because "fun motivates, leads
to experimentation, and hence to innovation."

Another important aspect is the cost and license, and the philosophy behind the soft-
ware that is used for our project. It is self-explanatory, that a student project does not
have the necessary monetary funds to purchase commercial software. Commercial
software is often optimized for scalability as well as redundancy. Large portions of the

63

initial purchase costs can also be attributed to support services. These are features
that are not a necessity for the project at hand, in fact they often have a negative effect
as they create an ecosystem around these software platforms, where related services
or products are also commercial. The main problematic lies in the architecture of com-
mercial products.

Most of these applications are build upon proprietary technology that deliberately re-
stricts interoperability to lock the customer in, however, it is our intention to experiment
and rely on external APIs for certain information and operations, such as displaying
geospatial information. Moreover, commercial products tend not to publish their source
code, meaning they distribute compiled versions which cannot be altered. The aca-
demic context of this project demands that critical questions are asked: How is the
solution implemented? How could it be improved? Without having access to the source
code, these questions cannot be answered. Open-source projects follow a different
maxim: All of the source code is published publicly. Most open-source licenses allow
the code to be used free of charge for any purpose, even commercially. Support can be
purchased if needed. The fact that the source code is freely available attracts develop-
ers to improve upon it which results in quicker development cycles and design decisions
which can be followed and influenced using the also publicly held discussion.

As previously stated, there are several requirements that must be met in order to
be suitable for the project’s concept and time-frame. For most major programming
languages, more than one framework exists that could be considered for the project -
a decision was made in favor of Python, in conjunction with Django, for the following
reasons:

3.1.2.1. Rapid programming language

Not only does the chosen framework support the process of rapid development, the
programming language itself is construed as being as flexible as possible and easy to
develop for. Python is considered to implement "intuitive object orientation" meaning
it offers very high level dynamic data types and full modularity using duck-typing in-
stead of strict-typing. In comparison to the improvised object-orientation of PHP and
the strict object-orientation of Java, developing in Python results in considerable time
advantages. The clear and readable syntax, which bears resemblance to pseudo code,
brings a shallow learning curve about allowing students with a background in any pro-
gramming language to read and write Python code in a short amount of time. In ac-
cordance with the requirements set forth, Python is published under an open source
license that makes it freely usable and distributable. Powering, and receiving support
by, large corporations such as Google ensure the constant improvement and longevity
of the platform.

64

3.1.2.2. "Batteries included"

Python attributes itself as "batteries included"3 to describe the extensive standard li-
brary, which includes libraries ranging from a webserver to a GUI toolkit. For almost
everything else, third party components are available as open-source, making Python
suitable for all problem domains of the project. Many other languages can easily be
integrated by using language wrappers. This means that one programming language is
sufficient - students can operate at a high conceptual level, using advanced language
constructs instead of learning the basics of many different languages. The result is
code of high quality and a deeper understanding into advanced programing concepts.

3.1.2.3. Availability of Django and its extension GeoDjango

Django is a Python-based Web Frameworks that fulfills all of our requirements. It
complements Python in its rapid development approach, offers sophisticated buildings
blocks (such as a object-relational mapper, internationalization, a template system, etc)
that make getting started easy, it is open-source and its high level of abstraction, which
is often referred to as "automagic", surprises the developer because of its simplicity and
thus ensures he is having fun. As outlined before, the web-platform enables the user
to contribute spatially enabled data. A specialized branch of Django that adds support
of geometry fields and extends the ORM to allow spatial queries is available under the
name GeoDjango. Geospatial information can be seamlessly integrated into Django
applications for a web-enabled GIS with the comfort known from Django.

3http://python.org/about/

65

3.1.3. Android in a Nutshell4

4Vahe Markarian

66

The Android project started with a team, who went to work at Google on July 2005.
The idea was to develop the first open source mobile device operating system which
would allow handset makers and carriers to provide a flexible and upgradable system.
While the team was working on the project, Google started informing several leader
companies in search for cooperation. Soon after the Open Handset Alliance (OHA)
was formed.

Currently OHA reaches to 65 mobile and technology leader companies (OpenHand-
setAlliance, 2010a), among its members are Google, HTC, LG Electronics, Motorola,
Samsung, Sony Ericsson, Toshiba, Asus, Intel, NVIDIA, eBay and other handset man-
ufacturers, mobile operators, semiconductor and software companies. The cooperation
between these companies led to the creation of their first project, the Android, a Linux-
based open source mobile device OS which was unveiled on November 2007 (Google,
2010e).

OHA members are strongly devoted to openness, as they claim “Increased open-
ness will enable everyone in our industry to innovate more rapidly and respond better to
consumers’ demands” (OpenHandsetAlliance, 2010b). The Android platform was built
to be truly open, which would allow developers to create applications to replace the
phone’s core functionalities such as replacing the default web browser, image viewer,
or messaging application. As of 21 October 2008, Android is available as open source
under the Apache License, which allows the vendors to freely add proprietary exten-
sions without submitting to the open source community. Android is based on the Linux
kernel, hence these components are licensed under the GNU General Public License
or GNU Lesser General Public License, the LGPL. The Android platform is also using
several open source libraries under various licenses, such as LGPL, BSD, MIT, etc.

Android Applications area equal, which means any application that comes with the
phone is no different than those written by any developer. It comes with a set of built
in applications, like desktop display, telephony, web browser, email, media player, and
other applications. Minimum hardware requirements are 128MB of RAM and 256MB of
Flash Memory. The platform supports large screen resolution and keyboard interface.
It also supports video, camera, touch screen, GPS, accelerometers, and 3D graphics.

To develop Android applications one must download and install the Android SDK5,
which includes device emulator, tools for debugging, memory and performance profil-
ing, and a plug-in for Eclipse IDE6, which is the supported development environment.
The installation of the Eclipse plug-in ADT (Android Development Tools) is required to
add integrated support for Android projects and tools.

3.1.3.1. Android Anatomy

Android Anatomy consists of several layers that structure the Android operating system.
These layers include the Linux kernel, native libraries, Android runtime, and application

5Software Development Environment for developing Android applications. It can be downloaded at:
http://developer.android.com/sdk/index.html

6An Integrated Development Environment for developing software. It can be downloaded at: http:
//www.eclipse.org/downloads/

67

Figure 3.1.: The system architecture of the Android platform.

framework.

Linux Kernel
The Android architecture relies on the Linux kernel version 2.6 , which corresponds

to the red layer illustrated in figure 3.1. The kernel manages the core system ser-
vices such as security, memory management, process management, network stack,
and driver model. Therefore, the kernel takes care of hardware drivers to run on the
mobile device. Android is designed to run on virtually any ARM-based Linux kernel
environment, and it provides support for Qualcomm MSM 7K chipset family. As new
versions of the Android platform appear, support for other major chipsets will be added.

Native Libraries
A set of open source libraries, the green layer in figure 3.1, are implemented in the

Android platform to be used by various components of the system. Developers may find
these libraries appealing to create innovative applications for Android. These libraries
are mostly written in C/C++ programming language. For example, the 3D capabilities of
Android are due to the OpenGL ES 1.0 API, which supports hardware 3D acceleration
and highly optimized 3D software rasterizing. Another example is the SQLite library
which is a powerful and lightweight relational database engine available to all applica-
tions. It is quite effective in embedded systems and yet provides most features found in

68

the SQL-92 (SQL, 2010) standard.

Android Runtime
Android runtime, the yellow layer in figure 3.1, consists of core libraries and Dalvik

VM7. Core libraries, written in Java language, consist of a set of Java SDK core libraries
intended for the use of embedded systems and other libraries that facilitate mobile de-
vice functionalities. Whereas Davlik VM is specifically designed for embedded systems,
to transform the Java format into Dalvik format. A special tool named “dx” is integrated
in the Android platform, it converts generated byte code from .jar to .dex file format,
which enables the byte code to run more efficiently on the small processor. For that
reason every Android application runs on its own instance of Dalvik VM, yet enabling
multiple instances of Dalvik VM running on a single device simultaneously.

Application Framework
The Application framework is composed of APIs written in the Java language. It is

a toolkit that simplifies the use of components within the applications. Therefore, appli-
cations may use other application’s capabilities under the security restrictions enforced
by the framework. For instance, contacts in the address book can be directly marked
on a map relying on their address.

View System: UI components such as lists, grids, text boxes, buttons, etc.

Activity Manager: manages lifecycle of an application and provides a common navi-
gation between applications.

Resource Manager: allows applications to access non-code resources like strings,
graphics, and external files.

Content Provider: enables applications to access shared data from other applications
such as contacts, messages, etc.

Notification Manager: is used to show customized alerts in the status bar.

Package Manager: stores a list of installed applications in the system.

Telephony Manager: includes necessary API for telephony related functions.

Above the application framework are all the applications that are either shipped with
Android or created by any developer. Due to the equal nature of applications in Android,
end users can optimize their mobile device by installing customized applications which
can completely adapt the system to their needs.

7An extremely low-memory based Virtual Machine designed for the Android platform to work well during
low power, CPU, memory, and data storage situations.

69

Activities
Android applications are divided into four building blocks: Activity, Broadcast Intent

Receiver, Service, and Content Provider. While developing an application, one must
define which of the mentioned components should be used in an application by list-
ing in a file called AndroidManifest.xml. Accordingly, every Android application must
include this XML file in its root directory. The manifest file holds the capabilities and
requirements of the declared components before running any application code.

Activity
An activity is a user interface component, which displays a single screen in the ap-

plication. For instance, an activity will be listing all the contacts in the address book, and
another activity can be displaying only one contact with all its information. Each screen
is implemented as an activity, and moving to another screen is realized by starting a
new activity. While a new activity is started, the previous one is paused and queued in
the history stack. Users may control the activities by going back and forth among the
paused activities, or even remove an activity when it is no longer in favor of the user.

Android manages screen to screen navigation by a special class called Intent. Intent
has two important properties, action (MAIN, VIEW, PICK, and EDIT) and the data (URI
– Unified Resource Identifier) to act upon. For instance, viewing a picture in the image
gallery is done by creating Intent with the VIEW action and the data set to the URI
representing the picture.

Broadcast Intent Receiver
It is used to respond to any external event. For example, an alarm notification

must be generated while receiving an SMS. Broadcast Intent Receivers are defined in
AndroidManifest.xml or in the code itself.

Service
It is a task, running in the background. In other words, one can open an application,

and keep the service running while browsing other applications. For instance, one can
open a media player and listen to music and at the same time open a web browser
without interrupting the music from playing.

Content Provider
It is a class, implemented to share data with other applications in a standard set

of methods. Hence applications can make use of other applications by obtaining their
data and manipulating it in another fashion.

70

3.1.4. Django in a Nutshell8

8Pia Storck

71

The following section provides an overview of Django, a framework that was used
within the project for the web platform. After introducing its core features, special at-
tention will be given to the model-view-controller design pattern and to the different
components of that programming tool.

3.1.4.1. Introduction to Django

Django is a web framework written in Python9 that “encourages rapid development and
clean, pragmatic design” (Django Project n.d.) by simplifying common web develop-
ment tasks. It is released under the BSD License and considered to be an effective tool
for creating database-driven web applications which are easy to maintain. By providing
a programming infrastructure, it is easier to build better applications with clear code
in less time. “High-level abstractions of common Web-development patterns, short-
cuts for frequent programming tasks, and clear conventions for how to solve problems”
(Holovaty and Kaplan-Moss, 2009a pg.3) contribute to Django’s goal of facilitating the
creation of complex websites.

In addition, the framework relies on the reusability and “pluggability” of components
as well as on the so called DRY10 principle. This rule states that “every piece of knowl-
edge must have a single, unambiguous, authoritative representation within a system”
(Hunt and Thomas, 2000) to preserve flexible and maintainable code.

Besides, the web framework offers sophisticated building blocks such as an object-
relational mapper, a template system and other useful components which are cleanly
separated from each other. Thus, just like Python, Django follows the “batteries in-
cluded” philosophy which implies that a large standard library with tools for common
tasks is available. Originally developed to manage news-oriented sites, Django is now
used by web developers around the world11.

3.1.4.2. Model-View-Controller Pattern

Like other frameworks Django follows an architectural pattern called model-view-controller,
or MVC for short. The pattern divides the application logic from the input and screen
presentation. While the model represents the data and the business rules upon which
the application operates, the view renders the content and specifies its presentation.
The controller, on the other hand, “defines the way the user interface reacts to user
input” (Gamma et al., 1995 pg.4). By decoupling these three kinds of objects, flexibility
and the reuse of existing code is facilitated.

According to the Django Project this design pattern is interpreted slightly differently.
In Django a view is only a callback function for describing which data is presented. How
it is displayed is specified by the template which is loaded by the view that renders it
with the retrieved data. As a result, the content is separated from the presentation. A

9Python is also used for settings, files and data models (Django Project n.d.).
10DRY stands for “Don’t Repeat Yourself” (Hunt and Thomas, 2000).
11For example, the Washington Post www.washingtonpost.com uses Django for parts of their website.

72

simple database-driven application will at least be split over three Python files (mod-
els.py, views.py and urls.py12) and an HTML template. Complex projects, of course, will
consist of a lot more files. The idea behind this approach is the separation of concerns
because when the components of a Django-powered web application are loosely cou-
pled, they “can be changed independently without affecting the other pieces” (Holovaty
and Kaplan-Moss, 2009b pg.6).

3.1.4.3. Components of the Django Framework

As mentioned previously, Django sets high values on reusable applications which al-
low the seamless integration of additional functionality so that the entire project re-
mains easy to manage. The core framework consists of several components such as
an object-relational mapper in which the database layout is described in Python code.
Furthermore, Django comes with an URL dispatcher that supports clean and elegant
URL schemes. The view system is responsible for processing requests while the tem-
plate system separates the design not only from Python code but also from the content.
Other components are a cache system and a lightweight, standalone web server for
development and testing. Also commonly used is the forms API, a library for handling
forms. In addition, the core provides a dynamic admin interface, built-in tools for gener-
ating non-HTML content and the functionality for internationalization.

Besides, several bundled applications exist to extend the core functionalities of the
main Django distribution. These extensions include an authentication and commenting
system as well as tools for generating web feeds and a branch for creating GIS applica-
tions13. In conclusion, it can be said that Django is a very flexible and easily extensible
Python-based web framework which saves time and supports developers in building
high-quality web applications.

12The urls.py file represents the controller that assigns a given URL pattern to a view.
13http://geodjango.org

73

3.2. System architecture

3.2.1. Overview14

14Yarik Sheptykin

74

Under the system which is being referred to in this section it is understood a com-
plex software solution for the requirements set in the conceptual design document of
the StreetDroids project. The software solution is complex because it is composed of
many conceptual parts which provide different functions and use various technologies.
The architecture of this system was introduced based on the initial conceptual require-
ments of the game mechanics document discussed in section 2.6.1.2. Along with the
concept of the game itself, its mechanics, rules, players and environment, the game
design document establishes a set of requirements which the software solution must
meet to implement the designed game. Among the many requirements the ones which
influenced the system architecture the most are:

• StreetDroids is a mobile game

• players must have the possibility to contribute with their own content to the game

• players must have a community where they can share their play results and com-
pete against each other

Though the game is defined as a mobile game the other requirements make the system
too complex to build it on a mobile platform only. The fact that the players must have
a community where they can communicate and share content, forces the system to be
always available and act as a common server for many peers. Therefore this part of the
system logic cannot be put on a mobile device, which is always in movement and does
not have a stable connectivity to a common communication media. Another obstacle
in implementing the whole system on a mobile platform is a limitation in computational
and data storage resources normally fixed by a device vendor. These arguments led to
the decision to split the solid system into a set of interconnected pieces.

It was decided to break the system into two main parts: a server and a client. The
server should be always available to a wide range of users and therefore should have
a static well known address in a common communication environment. The clients
should be as light as possible and provide the basic interaction functions to the end
player. The client-server system architecture is a widely implemented model used for
many software business solutions (Renzel and Keller, 1997). As the most suitable com-
munication environment it was chosen to use Internet, which nowadays is a common
communication media for many technologies, and is able to bring together mobile and
PC users, which is the most important for the project.

In a situation where the system architecture is being split it is very important to
find a good balance in placing the system logic on its parts. Tuning such a balance
many aspects of a system performance should be taken into consideration. First of
all, the limitations that a mobile platform puts on the application must be considered.
Eventhough mobile platforms constantly grow in terms of computational rates, data ex-
change speeds, and data storage sizes, they still put noticeable restrictions on user
applications. Therefore it seems obvious to put most of the system’s components on
the server, and leave the client for the interaction with the player only. Nevertheless
this radical approach would require a lot of communication between the client and the

75

Figure 3.2.: Architecture that has been adopted in the StreetDroids project for a soft-
ware system implementation.

server, which in turn decreases the performance, increases the costs, and therefore
debilitates the user experience.

All these arguments were considered while developing the system architecture which
resulted in the most suitable solution for the project requirements. Most of the logic
related to the game itself was implemented on the mobile side of the system. This
logic includes the navigation, the puzzle launch control and the interaction with the
player inside the game. There are also some parts of the game code that were put on
the server side. The logic that defines the sequence of puzzles, puzzle locations and
puzzle contents is placed on the server.

This kind of separation helped the application to reach the highest productivity, and
also gave much flexibility for the game’s customization through user generated content.
Nonetheless the separation of the game logic brings dependencies into the system
components and prevents the logic from localizing itself in one certain place, which
makes the adaptation to any possible conceptual changes harder.

Considering all advantages and drawbacks discussed above a sketch of the system
architecture, shown in figure 3.2, has been suggested.

Figure 3.2 shows the architecture that has been adopted in the StreetDroids project
for a software system implementation. This architecture is based on the client server
architecture paradigm and composed of one StreetDroids game server, many Street-
Droids game clients and one global StreetDroids game data storage.

The game server is the part of the system architecture that offers access to the game
content which is stored in a database managed by a database management system. It
provides two interfaces to the game data. One is used by game clients for downloading
puzzles and puzzle content. Another interface allows the game users to view, edit
and create the content for the game. Both interfaces additionally allow the players to

76

login and control their accounts, it also allows them to play and to contribute to the
game’s content. The interface used by the game clients is called API. Along with the
data access this interface defines a set of functions for a game flow control. The other
interface is built to give the web users the ability to share the results of their play, control
their accounts and to create new content for the game, such as custom missions and
puzzles.

The game client is a piece of software running on a mobile GPS-enabled platform.
It is composed of three main parts: the player interface, the game logic and a web
client. Through the player interface a player interacts with the game. In response to the
player’s action the interface generates game events, which are processed by the game
logic. The game logic controls the game flow based on the programmed reaction on the
game events coming normally from a player or from a GPS module. Some events are
also generated by the web client, which is used for exchanging the game data between
the client and the server. The web client gets access to the game data through the API
mentioned above.

The communication medium used by the web client to call API functions is the In-
ternet. Every request to the API server is done via HTTP, as it was decided to use an
HTTP server for both, the web and the API frontends. Every data being transferred
between a client and a server is wrapped into an XML document and sent as an HTTP
content along with an HTTP request/response. All API calls are made based on the
“pull” method, which means that the data is delivered to the client only after the client
has requested it, therefore the API server never starts a communication session. The
game server API and the communication rules are further discussed in the following
sections.

The architecture sketch presented in this section has been suggested and accepted
in the beginning of the project development. Though it does not define precisely an
architecture for the software solution for the initial project requirements, it outlines the
ground for such a solution. In fact, this architecture served as a basis for a software
architecture developed to program an application logic, which is split into a client and
a server architectures respectively. Both this architectures are explained in details in
sections 3.2.2 to 3.2.4.

77

3.2.2. Client Architecture15

15Vahe Markarian, Yarik Sheptykin

78

The client architecture in the scope of the StreetDroids project is a software design
document that defines application components and their relations, which were used to
program the client part of the StreetDroids game on a mobile platform. The architecture
has its roots in the system architecture discussed in the previous section. It takes the
client part, defined in the overall system design, and specifies down an architecture for
each of its particular components. Therefore the architecture discussed in this section
is a particular branch of the entire software system, and consequently its concept is
influenced by the interfaces of the other parts. Though the overall system architecture
has defined a clear interaction between its parts in practice it is very hard to follow these
guidelines. During the system implementation specific peculiarities of every platform
constantly introduce slight changes to the initial interaction model. Consequently the
architecture of each system part is always being influenced by the architectures of other
systems, and also constantly evolves along the application development. These facts
have been considered while developing a flexible and a successful client architecture,
which is a result of an evolution driven by a constant research, platform evolution, and
the client application development itself.

The client application development in the StreetDroids project consists of two phases.
The first phase is the phase of the game prototype, which was conceived to test the
platform’s features and to prove the implementability of the game concept key features.
The game prototype was build under a special client architecture, which was a simpli-
fied version of the architecture used for the final application. Although the prototype
architecture had been simplified it was still very complex. It was composed of sixteen
classes, and used a game loop very similar the one used in the final game implemen-
tation. The prototype successfully tested the core game mechanics, and much of the
prototype architecture was later adopted for the final client architecture.

The second phase in the application development started with an attempt to evolve
the prototype into the final software solution. At this point the architecture had been
through many changes. Many new components were added to accomplish the require-
ments set in the game mechanics document. The old components and their relations
were altered as well, because a constant research in the mobile platform architecture
brought many new solutions to the old problems. Most of the changes were introduced
because of specific feature adaptations of the chosen platform, which led to a consider-
able code refactoring. This happened because the initial architecture was too general
and did not make use of the platform’s peculiarities and specific mobile requirements
the platform had been designed with. It is not the fault of the preceding architecture,
but rather a necessary step for its evolution, since the concept used for the previous
architecture was kept, eventhough the implementation at some points was changed.
According to the concept of the prototype architecture there were several generalized
blocks the software was designed around. These parts are the game logic, the GPS
processor, the HTTP client, and the player interface. These blocks remain in the current
software solution, but they are implemented in a slightly different way. For example, the
game logic in the final implementation still launches a puzzle when the player reaches
the right location, but instead of running the puzzle in the current activity it starts a new
one on top. There were many other similar changes, which were made first of all to

79

Figure 3.3.: The diagram is composed of generalized software modules – the compo-
nents

provide a better experience to the player.
One of the most important parts of the architecture adaptation is its visualization

method. Since the architecture is mostly implemented by many different people in a
long period of time it is important that all have a common vision and understanding
of the existing architecture. During the architecture development in the StreetDroids
project the unified modeling language (UML)16 was used. As mentioned before, the
prototype architecture was already very complex, but additional changes done in the
second development phase made it even more complex. The prototype architecture
could be clearly visualized as a UML diagram of application classes. Unfortunately
the complexity of the final architecture does not allow it to be presented in a clear
UML class diagram. Because of its big size this type of representation will reduce the
readability, and can increase confusion among its readers, which is very undesirable.
Therefore it was decided to generalize application classes into blocks, and present the
client architecture as a diagram of these blocks with the maximal possible scale of
precision.

16The Unified Modeling Language http://www.uml.org/

80

The diagram presented in figure 3.3 is composed of generalized software modules
called components. Each component depicted as a blue rectangle is actually composed
of many classes grouped by functionality. The diagram shows that some of the com-
ponents provide functions to others components through interfaces. Each interface,
shown as a green bubble, defines a set of methods which the components can call. For
every interface there has to be a component that implements the functionality defined in
it. There are three main functionality providers: the application, the server API and the
asynchronous executor components. Many of the functions used by other components
are implemented in those modules. As it shows from the component name the server
API provider component implements methods for accessing the game server API. This
component is vital for the game, because as it was discussed in the previous section
a part of the game logic is implemented on the server. The functionality provided by
this component is consumed mostly by the application component, which is the main
component of the system. This component groups source codes, which control an ap-
plication flow. It also provides access to the global application data, and its services are
consumed by other core components such as the puzzle and the navigation.

The navigation component except application functionality consumes also a function-
ality provided by the asynchronous executor component. This kind of functionality is
not vital for the system execution, but it provides functions that allow a piece of code
to be executed in a separate thread. The methods of this block are used by the ap-
plication and navigation blocks code to execute long term, high CPU or IO consuming
operations. For example, the navigation module asynchronously downloads the next
puzzle while the player is walking around the city, and when the player finally reaches
a puzzle location the puzzle instantly pops up, because its content had already been
loaded onto the device. Additionally there is the player component, which also provides
a set of functions required for the game implementation. Those methods are used for
user data manipulations. In the current application the player interface is mostly used by
the puzzle component, where there is a need to access player’s coins. Similarly to the
player component the NPC component also provides a small interface for manipulating
the NPC behavior.

Of course, on the lower layer - on the layer of higher details - there are more interfaces
that define the actual communication between the system elements, but they have not
been included into the component diagram because of readability issues.

Components which do not provide any functionality normally consume it from the oth-
ers. The two “biggest” such consumers are navigation and puzzle components. These
two components include GUI parts, therefore they redirect some of the consumed func-
tionality to the user with new functions added to it. The navigation component provides
the user interaction while the player is walking around the place looking for a puzzle
location. This module is responsible for giving play hints, displaying the compass, mon-
itoring the user position, and launching puzzles in time. The puzzle component includes
the logic that controls the interaction during the puzzle play. This component is com-
posed of several puzzle type blocks; each block includes specifics to a puzzle type
classes.

Another component that has an GUI is the entry component. It contains classes that

81

handle interaction with the user before the actual game starts. It includes start menu
and login screen handlers. There is also a component which neither consume nor pro-
vides any functionality. Instead, the elements included in the item component are used
by other modules. For example, the item consists of a set of classes which model items
of the game instances of which are used by the other components. The architecture
presented in this section has successfully been used in the StreetDroids project for the
client side application development. A components diagram shown in figure3.3 gives
a general overview of this architecture, which is too complex to be visualized in this
paper with a higher level of details, but it definitely deserve some attention because of
the many interesting solutions it gives. The architecture which is currently in use has
evolved during the project’s development, and is possible to continue this evolution if
further development happens.

3.2.2.1. Activities

One of the platform’s peculiarities, which has been mentioned in the previous section,
is an activities concept of the Android mobile platform application. In the official Android
documentation an activity is defined as “a single, focused thing that the user can do”
(Google, 2010a). An activity can be compared to a single application window, neither
complex nor too simple. Having more than one layout in a single activity is possible.
Every Android application, except from a service, has at least one activity, which is at
the same time a main entry point into the application. According to the Android soft-
ware system architecture activities are in a way separated parts of an application. In
case there is more then one activity, they can share the same data storage and work on
common objects, but their execution is separated in time, and is controlled by the user’s
focus. The concept of activities is designed in a way that each activity of an applica-
tion could be used by another application, which promotes code reusability, but it also
brings some requirements to Android application developers. These platform features
have been considered while implementing the migration from the prototype architec-
ture to the final application architecture. The architecture was changed in a way that
allowed the separation of the application code into the corresponding activities. There
are three layers in the user interaction sequence, which created a basis for breaking
the application execution into activities. These three layers are, an entering layer, a
home layer, and a game layer. The entering layer groups such actions as starting the
application, logging in or creating a new account, and adjusting the preferences and
language selection. The home layer includes the functionality that the user receives
after a successful login; these actions are editing the personal data, browsing and re-
suming paused missions and starting new missions. The last interaction layer groups
actions that happen in the game itself, like navigation, puzzle launch, NPC interaction,
etc.

Though this kind of division is intuitively clear and is easily derived form a simple
application flow, such as login, choose mission, or play the game, it cannot be directly
mapped to the activities architecture because each of these parts has much more in-
teraction components than one mobile screen can fit. Therefore it was decided to do

82

a further breakdown of the application interaction phases into simpler blocks. To gain
the best profit from splitting an application into activities it is important to keep bal-
ance between overwhelming the application with too many activities and creating few
but “heavily” programmed ones. Both of the extremes affect the performance and the
memory consumption. To prevent this from happening the interaction load has been
considered for the activities architecture design. Interaction phases which require a lot
of code and resources have been broken into separate activities. A good example is
the game play phase, which has been divided into the navigation and the puzzle play
activities. However, the home user phase has been left as a single activity with sev-
eral layouts interchanged, because it does not have much interaction on all its screens.
Nevertheless if the further development of the user interface adds more complexity to
the home activity it can be sub split to keep the interaction balance aligned between
application activities.

Another specific feature of the Android mobile platform is the ability of one application
to use activities shared by the other application. This feature is possible because each
activity in an Android application is a sort of isolated application module (Rogers et al.,
2009). Each activity can, for example, launch a new activity, but cannot close it without
a direct system activity stack manipulation. An advantage of such a feature is that there
is no need for a custom activity design if an activity with a close functionality is shared
by another application or the Android system itself. It is also considered good practice to
share activities of a custom application so other developers can access and reuse them.
Despite many positive sides this feature also has drawbacks. First of all, “borrowing”
an activity from another application introduces undesirable dependencies. Sharing an
activity might also lead to a very general activity design, which affects the performance
of the host application. It also affects the way the application data is shared among
activities. If activities are designed for “export” they should be isolated as much as
possible from the other application parts, and operate on the data bundle given with
their call.

Unfortunately all activities in the StreetDroids project are tightly connected with the
global application data. Therefore it has been decided to ignore the discussed feature,
and neither use foreign activities nor export inner ones. Based on discussed above
decisions the activities architecture, shown in figure 3.4, has been developed. The
architecture is presented as an activity tree which gives it a clear visualization. The big
green boxes correspond to the activities. Each activity has at least one screen the user
can interact with. If an activity has more then one screen it can switch between they
are a shown in the smaller blue rectangles. The start menu and login activities belong
to the entering layer and provide the functionality that allows to manipulate the global
game preferences, receive help, login to a game, or register in the system if an account
has not been created yet.

The next interaction layer is presented by a single activity which only groups functions
related to the user’s home page. The last layer on the diagram is the game play layer
that is implemented with two activities: a navigation and a puzzle activity. The navi-
gation activity includes all functions needed for the user to navigate around. Though it
has only one screen it is very rich with interaction elements, and it has much program-

83

Figure 3.4.: The structure shown presents an activity composition of the StreetDroids
project.

ming code behind it. When the player reaches a puzzle location the navigation activity
launches the puzzle activity, where the user is given all required functionality to play
each specific puzzle.

This activity structure accurately outlines the activity structure used in the final appli-
cation design concept, eventhough it lacks some screens defined in the game mechan-
ics document. This happened because during the game’s concept implementation all
features have been prioritized, and only the features with high priority made their way to
the final application. This nevertheless does not mean that features with lower priority
will never be included in future releases.

It is worth to be noticed that some activities have many screens, while others have
one screen only. In the passages above the importance of balance has been men-
tioned, and it might seem that this balance is not well tuned at first glance. This is
both, right and wrong, because of the following reasons. In one hand, the activities
architecture which is currently used in the application really lacks some balance if, for
example, the login and the home activities are compared. The login activity has two
screens only and the programming logic of those screens is not very complex. On the
other hand, the home activity has twice as much screens and the logic behind them
is considerably more complex. Nevertheless, while developing this activities model a
possibility for further development has always been considered. The point is that some
features from the login activity were given a lower priority compared to the ones the

84

home screen had. Therefore those features were not implemented yet, but if they are
included in future releases there is already a place reserved for them. It is expected
that this tiny design peculiarity helps to make further development easier.

3.2.2.2. Package Structure

The game itself is divided into several packages, which are the building blocks of the
client architecture. The packages contain all the necessary classes in an organized
fashion. The arrangements of the classes within their packages are done based on the
usability of the classes with relation to other classes. The packages are as follows:

API: An interface that allows communication between the server and the client via XML
documents. It allows the game client to submit and receive data about the puz-
zles, missions, geo locations, sessions, etc.

Application: The main application of the game that holds all the activities for the game
play. It is also the global section between all the activities to share and access
data.

Async: Performs asynchronous API operations to improve game functionality. It runs
tasks in separate threads, thus allowing multiple operations to be executed simul-
taneously. For instance, while downloading puzzle location, the puzzle itself could
also be downloaded at the same time to allow quick game responses.

Compass: Custom compass functionality integrated in the game.

Hint: Functionality of game hints that consists of either geo location hint or puzzle hint.

Httpclient: Handles the communication between the game client and the game server.

Item: Functionality of game items, which are the reward when a puzzle is successfully
finished.

Location: Responsible for user and puzzle locations. User location consists of single
geo location, while puzzles have a single geo location as center and a set of geo
locations around the center that form an area.

Log: Specifically designed for evaluation purposes to track down the usability of the
game.

Login: Handles the interaction that allows the user to login, create new account, or
play as a guest.

Map: Provides functionality to display Google Maps, as well as to overlay graphic such
as user and puzzle location markers.

Mission: Game mission functionality that allows players to start, store, and skip while
playing.

85

Motion: Listens for device’s accelerometer and GPS location motion changes. Triggers
events when the player moves, reaches a puzzle or hint locations, or moves away
from the puzzle location.

Navigation: Handles displaying of the map and launching of the puzzles based on the
motion events.

NPC: A Non Playable Character interface, which is used to interact with the player
throughout the game.

Puzzle: Consists of generic and specific puzzle classes. Specific puzzles are singular
activities which have different puzzle logic, while the generic puzzle provides a
common structure for specific puzzles.

Startscreen: The starting point of the game. It allows players to select different activi-
ties of the game.

User: Handles player functionality.

86

3.2.3. Server Architecture17

17Till Hennig, Alexander Tyapkov

87

3.2.3.1. Deployment and Dependencies

Serverside Dependencies
The following software is used at various points throughout the core of the project:

lxml (2.2.6) - "lxml is the most feature-rich and easy-to-use library for working with XML
and HTML in the Python language." Used for parsing XML documents18

PIL (1.1.7) - "The Python Imaging Library (PIL) adds image processing capabilities to
your Python interpreter. This library supports many file formats, and provides
powerful image processing and graphics capabilities." - Required for image pro-
cessing, see sorl-thumbnail19

django-tagging (0.3) - "A generic tagging application for Django projects, which allows
association of a number of tags with any Model instance and makes retrieval of
tags simple." Used for categorizing puzzles20

sorl-thumbnail (3.2.5) - "Our goal is to make the best thumbnailing application for
Django, balancing simplicity and extensibility." Used for creating resized variants
of image media automatically21

Clientside Dependencies

Mootools (1.2) - Javascript framework for user interface interaction22

Dependent on mootools are the following libraries:

Lasso.Crop - Used for "Photoshop"-like image cropping in various editors23

GearsUploader - Enables uploading multiple files at once24

MavDialog - Modal-window user interface25

Deployment
Django projects can be deployed to a number of different webservers, such as

Apache using either mod_wsgi or mod_python, or any webserver that support the
FastCGI, SCGI, or AJP protocols. Please refer to the documentation for the advan-
tages and disadvantages in each of the solutions26.

18http://codespeak.net/lxml/
19http://www.pythonware.com/products/pil/
20http://code.google.com/p/django-tagging/
21http://code.google.com/p/sorl-thumbnail/
22http://mootools.net/
23http://www.nwhite.net/?p=328#more-328
24http://bitbucket.org/kmike/gearsuploader/
25http://maveno.us/library/public/mavdialog/
26http://docs.djangoproject.com/en/dev/howto/deployment/

88

In the case of StreetDroids, the project is deployed to a server running Debian 4.06
and Cherokee Web Server27 "a very fast, flexible and easy to configure Web Server".
Cherokee is very lightweight in terms of memory footprint and runs sufficiently efficient
even on systems with limited hardware resources. The web-application runs on Python
2.5 and Django with the GeoDjango extension in the latest stable release (1.1.1 at the
point of writing). The environment ("webapp") the application is executed in is isolated
by virtualenv which manages dependencies and versions of Python packages.

To change the host system, the administrator needs to adapt the system specific set-
tings (such as file paths or database configurations) in the streetdroids.settings
module.

3.2.3.2. Overview

The implementation follows the structure of a Django project. Functionality belonging
together is encapsulated into a unit called an "application". Applications are imple-
mented according to the recommendations by James Bennett for creating "reusable
apps" (Bennett, 2008), of which the highest principle is "Do one thing, and do it well"
((Bennett, 2008) Pg. 4). Reusable, or "pluggable", apps allow the seamless integration
of additional functionality without the necessity for altering existing code, which makes
the project and its individual apps flexible and easy to manage.

By default, an application consists of:

• a models module, which realizes the persistently stored concept of the applica-
tion

• a views module, which declares functions that interacts with the model instances

• a urls module, which links URLs to a view functions

Applications may be extended by adding attentional modules (as detailed in section
3.5.2). New applications can be created by using the manage.py command startapp.

The common functionality of the StreetDroids project is separated into the applica-
tions core and supplements.core contains all elements (models, views, webser-
vice) that are required and relevant for the game-logic. The application supplements
contains elements not specific to any puzzle-type and not required for the game logic.
These elements range from non-playable characters (and the logic for creating them)
to images (and the logic for storage, resizing, etc).

In the following section the main concepts and their functionality will be presented.

3.2.3.3. Core

The following concepts are implemented as models in the module streetdroids.core.
models. These models are persistently stored in the database.

27http://www.cherokee-project.com/

89

• Mission: A mission is a collection of puzzles.

• MissionSession: A mission-session is the link between a mission and a user.
When a user selects a mission for playing, a MissionSession instance will be
created to keep track of the user’s progress (also see PuzzleStatus).

• StarredMission: A starred missions is a mission a user has bookmarked, i.e.
he is interested in playing but not in this instant.

• Puzzle: Puzzle is an abstract base class. All puzzle-type implementations
need to inherit from this class. It implements the common attributes and access
methods for all concrete Puzzle implementations

• PuzzleStatus: The PuzzleStatus class is used to track the status (if it has
been solved, failed, skipped) of a Puzzle within a MissionSession.

• Hint, LocationHint, PlayHint: The Hint models have the purpose of stor-
ing information that is specific to a Puzzle, and aid the user in accomplishing the
current task, such as finding the puzzle, solving it etc. Each Puzzle can have
multiple hints of each type.

• Texts: Contains all customizable texts related to a puzzle, such as introduction,
success and failure etc. These attributes have been separated from the Puzzle
model to allow language localization of puzzles.

• UserProfile: Because the User model is mandated by the framework (con-
tains a fixed set of attributes, such as username, email, name, etc), an additional
model, here UserProfile, is used to add project specific attributes to a User
instance (such as last know position)

3.2.3.4. Supplements

The following concepts are implemented as models in the module streetdroids.
supplements.models. These models are persistently stored in the database.

• Item: Model for the reward the user receives after successfully solving a puzzle

• Npc: The implementation of the guide in form of a character. Contains references
to the individual elements (See NpcElement below) and their offsets (relative
position to each other) as well as a rendered image of the NPC.

• NpcElement: The individual graphical element that a NPC consists of.

• ImageBase: An abstract base class for all following Image models. Contains
common attributes required for all images (such as the height, width and path to
the image)

• Image: The model for storing the original image as uploaded by the users.

90

• DerivedImage: An abstract class for all images that have been modified. This
model inherits from the Image model and adds additional information about the
performed image transformation and a reference to the Image-instance it was
derived from.

• TempImage: Inherited from DerivedImage. TempImage instances are tem-
porary and have a limited lifespan. They may be disposed of after their expiration
date has passed. TempImage-instances are created during the puzzle’s creation
process.

• ShoppedImage: Inherited from DerivedImage. ShoppedImage-instances are
clones of TempImage instances that have associated with a Puzzle-instance.
ShoppedImage instances do not expire.

3.2.3.5. Anatomy of a Puzzle Application

In the context of the project, every puzzle implementation, or puzzle type, is imple-
mented as an application. These apps follow the naming convention of X_puzzle,
with X being the name of the puzzle, i.e. dragdrop_puzzle.

Every Puzzle application must realize certain requirements in order to seamlessly
integrate into the core of the StreetDroids project. These requirements are:

• a modelsmodule with exactly one model which inherits from core.models.Puzzle.
This is the central concept of the puzzle application.

• an editor module which provides

– the variable EDITOR_FORMS: a list of Form instances which are included in
the Puzzle creation process

– the function create_xml_from_input(): required to return a valid XML
fragment of the data collected from EDITOR_FORMS

• a webservice module which provides

– the function new() which creates a Puzzle instance (and all supporting
elements from an XML document)

Furthermore, most default behavior (such as which template is rendered by what view)
can be customized by overwriting the default implementation.

Please refer to the sections 3.2.4 "Client-server communication and server API" and
3.5.2 "Technical details and structure of editors" for a detailed explanations of the mem-
bers above.

91

Figure 3.5.: The diagram highlights the relationships between the classes of core and
supplements and has been simplified in that regard (for example all
Image models are represented by one class)

92

3.2.4. Client-Server Communication and Server API28

28Till Hennig, Yarik Sheptykin

93

The term "webservice" consists of the two terms "web" and "service". A "service",
in the context of computer science, is an offer of some kind, that can be consumed
by a client. Usually data or an interface to other functionality is offered. The prefix
"web" refers to the way the service may be accessed, meaning it is accessible using
the Internet.

The fact, that the service and the client are meant to be on two independent systems
that are only linked by a network connection, requires a concrete specification of the
methods and the formats of that data that can be exchanged between the actors.

Moreover two independent systems are designed and supported by different devel-
oper teams, therefore a concrete methods specification is needed also for a common
system understanding among developers.

Webservices offer the following advantages:

Interoperability: The system architecture is adaptable and does not need to be ho-
mogeneous, because specifications for the communication are transparent and
platform independent, systems based on different operating systems and pro-
gramming languages are able to communicate with each other via a commonly
agreed protocol. Either side of the the communication can be exchanged seam-
lessly as long as the the protocol is followed.

Distributed Computing: The interoperability between system enables distributed com-
puting, i.e. the delegation of tasks to other computers, so called "nodes". Using
external nodes is useful in those cases, where the requesting node is lacking
hardware resources (processing capabilities, storage space, etc), such as mobile
devices. The client initiates the processing requests and receives the result, but
is not involved in the calculation that happens, this task has been distributed. In
the context of StreetDroids, this principle has been applied in the "Missing Piece"-
Puzzle: Instead of executing the complex image analysis on the mobile client
itself, it queries the webservice, which requires only a fraction of the time for the
analysis, and then returns the value.

3.2.4.1. The function of the webservice in the context of StreetDroids

As previously described, webservices enable the interoperability between systems. In
StreetDroids this has been utilized in the following ways:

Communication between mobile-frontend and server
The primary function of the webservice is to respond to requests from the mobile

client.
The exchange of data between the mobile-frontend and the webservice is essen-

tial for keeping the application and its content up-to-date as well as enabling context-
awareness. The mobile device reports its current status (location, score, ...) to the
centralized server which manages it and makes it available to the other clients.

94

The specification of requestable resources is discussed in detail in a later section;
anything from text to binary files such as images and videos can be transferred. The
information flow can either be from the client to the server or viceversa, however the
communication initiator will always be the client (information pull).

The information served by the webservice is data whose inclusion in the install pack-
age is not reasonable. The reason is either that the data is generated on-demand and
personalized for a specific user, for example game play data containing data specific
to the user’s location, or that the data file is too large in terms of file size (media files).
In accordance to the game concept the content is one of the customizable parts of the
game, therefore it cannot be included into a client installation package.

Communication between web-frontend and server
A webservice is also used during the Puzzle creation process. Data in a stan-

dardized format that is sent to the webservice is transformed into a puzzle. Puzzles
can be created by a multitude of frontends - be it the implemented web-frontend or a
standalone desktop application.

3.2.4.2. Considerations

It was mentioned above that the PULL communication model is used for accessing
the game data. This decision is considering the high mobility of game clients. With a
constant location change their connectivity, and therefore a network address, changes
along. Thus the server is not able to initialize a connection to a mobile client. Nev-
ertheless, despite moving mobile clients can always reach the server when connected
to the Internet, because the server has a static network address assigned to it. This
discussion contributed to a high level communication protocol selection. It has been
decided to use HTTP, the fundamental web protocol (Fielding et al., 1999), to exchange
application data.

The communication between a client and a server system part is conducted by a spe-
cially designed protocol. The protocol was built on top of HTTP and uses its requests
and result codes for exchanging documents. However, instead of HTML content sent
traditionally over HTTP (Fielding et al., 1999) the designed protocol requires a payload
to be formatted with XML. The XML allows to exchange data of any type, even a binary
code (Bray and Paoli, 2008). It is also easy to parse and there are many libraries avail-
able which provide an XML parsing functionality29. Both features have high importance
for the StreetDroids project. Support for any data type is necessary for the game con-
tent to download. For example, a puzzle content along with a simple text can include
pictures and other media resources. The availability of the lightweight XML parsers is
important for mobile clients which might be limited in their computational resources.

The communication design protocol introduced above defines a set of services or API
a game server provides to its clients. It also establishes rules for accessing the protocol

29a list of parsing tools http://www.xml.com/pub/rg/XML_Parsers

95

services. The API and the accessing rules are discussed later in this section in more
details.

3.2.4.3. The RESTful StreetDroids API

REST stands for Representational State Transfer and is an architectural style - or "pat-
tern" - for implementing web services. REST is not a standard (there is no REST
specification) but a RESTful webservice often relies on existing standards of the web,
such as HTML, XML, etc.

"The problem is, most of today’s “web services” have nothing to do with the Web.
In opposition to the Web’s simplicity, they espouse a heavyweight architecture for dis-
tributed object access [...]. Today’s “web service” architectures reinvent or ignore every
feature that makes the Web successful.” (Richardson and Ruby, 2007) They introduce
“... complexity [...], (which is) impossible to debug, and won’t work unless your clients
have the exact same setup as you”, for example by reducing HTTP "to a transport proto-
col for an enormous XML payload that explains what’s “really” going on." This is greatly
counterproductive in regards to the interoperability between heterogeneous systems.

Instead, RESTful web services aim to be "[...] amazingly, a simple, open (for now),
almost universal platform for networked applications." by following recommendations
described in the following chapter:

Characteristics of RESTful Web Services
REST web services can be characterized as:”

• Client-Server: a pull-based interaction style: consuming components pull repre-
sentations.

• Uniform interface: all resources are accessed with a generic interface (e.g., HTTP
GET, POST, PUT, DELETE).

• Stateless: each request from client to server must contain all the information nec-
essary to understand the request, and cannot take advantage of any stored con-
text on the server.

• Cache: to improve network efficiency responses must be capable of being labeled
as cacheable or non-cacheable.

• Named resources - the system is comprised of resources which are named us-
ing a URL. Interconnected resource representations - the representations of the
resources are interconnected using URLs, thereby enabling a client to progress
from one state to another.

• Layered components - intermediaries, such as proxy servers, cache servers,
gateways, etc, can be inserted between clients and resources to support per-
formance, security, etc.” (Costello)

96

While most of the characteristics have been taken into account while implementing
the StreetDroids web service, one aspect that has been neglected by design is the
fact that requests are stateless. The reason being, that the existing authentication
mechanism of the framework that the web service is realized with relies on sessions for
keeping track of the state of a user. In order to reuse as many of the existing framework
functionality for handling users the decision was made to disregard that principle instead
of implementing a solution that would fulfill that characteristic just for the sake of being
conform.

XML Format
Above was discussed that the communication protocol uses XML to format the

data being exchanged between remote system parts. The developed protocol defines
also the format of the XML documents for each particular case of data exchange. The
design of the StreetDroids XML format generally follows the guidelines of Google’s XML
Style guide. (Google, 2008)

The guidelines state that an "Attempt to reuse existing XML formats whenever possi-
ble" should be made. Reusing a standard was not possible due to the lack of standards
for the specific purpose of StreetDroids: The requirement for highly customized data
structures which are optimized for consumption by mobile devices, i.e. minimize the
data transferred to a reasonable and relevant minimum.

However, some elements from standards were included and made “sensible use of
the prescribed elements and attributes”, as per recommendation 2.1. Geospatial infor-
mation is represented in the GeoRSS-Simple format, which "is designed to be maxi-
mally concise, in both representation and conception." "Each of the four GeoRSS ob-
jects require only a single tag."30 (Point, Polygon, Box, Line, Circle) which makes the
format human-readable and allows the reuse of existing parsing libraries.

A recommendation for designing XML documents is to “use common sense and be
consistent. Design for extensibility. [...].” This leads up to the question whether to use
attributes or elements as the primary carrier for information. According to the author
of Google’s XML Style guide, “Attributes are more restrictive than elements, and all
designs have some elements, so an all-element design is simplest - which is not the
same as best.” The self-conception of StreetDroids is to be a framework, which allows
end-users to create content, and developers to extend the platform by adding new puz-
zle types. With respect to this fact a flexible, extensible, as well as easy to understand
format was needed, which resulted in a decision in favor of a mainly-element based
design.

API
In the context of the StreetDroids project the application programming interface (or

API) is an interface to services provided by the central game processing unit. According
to the software system architecture the API, or "game server", is the system component

30http://www.georss.org/simple

97

that provides services consumed by the game clients. Based on the game design and
defined by the designed communication protocol discussed previously the API provides
a list of resources detailed in table 3.1.

The calling sequence of API function is of importance. For example, a new puzzle
location cannot be retrieved unless a mission has been started or resumed. Some
resources are also privilege protected. For example, some of API functions are only
accessible to authenticated users. These resources are indicated by the "Protected"
column in the table above. A more thorough documentation for the publicly available
API is published at the StreetDroids wiki.

3.2.4.4. Server implementation

The core of the implementation for the webservice is located in the module core.webservice.
The XML-generation approach follows Django’s "MTV"31 - Pattern (Model, Template,

View) - however, instead of rendering HTML templates that are destined to be viewed
by the user, the webserver outputs XML from XML templates (located in in the "xml"
subdirectory of the templates directory).

An alternative would be generating XML documents purely programmatically using
a XML library. This would have the advantage of consistency checks during all steps
of the process, but the implementation would be far more abstract and less visual than
using templates. Due to the lack of programming knowledge this approach was not
feasible.

Each of the accessible URIs (detailed before) is implemented by a method - the
method must accept an request-instance as the first argument.

Some API URIs are accessible only when certain criteria are met: A requirement
can be the HTTP-method used for the request, the payload of the HTTP-request or the
existence of a valid user credentials. This functionality is implemented in decorators (in
the module core.decorators) - the following are available:

• permitted_methods(methods) - takes a list of accepted HTTP-methods as
argument - restricts access to certain HTTP-methods

• validate(dtd_file) - takes the path to a dtd-file as argument - validates the
payload using the referenced dtd-file

• exchange_plug() - pass-through for currently active puzzle

• login_required_404() - checks whether the request has been made by an
authenticated user

• mission_session_required() - makes sure that a mission session has been
activated

31http://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-\
\mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-\
\template-how-come-you-don-t-use-the-standard-names

98

URI Description Protected Method Response

/resources/ Lists all available api resources No GET
200: ReturnsXML

405: Method not allowed

/register/ Used to register a new user No POST

200: User was created successfully
400: Request not in expected format

405: Method not allowed
500: Username is already taken

/login/ Used to log an existing user in No POST

200: User was logged in successfully
400: Request not in expected format

405: Method not allowed
500: User does not exist or incorrect Password

/logout/ Used to log an existing user out Yes GET

200: User was logged out successfully
404: User is not logged in
405: Method not allowed

500: Attempting to logout without being logged in

/ping/ Used to send a location update Yes POST

200: Location saved successfull
400: Request not in expected format

404: User is not logged in
500: No active mission-session

/missions/ Returns a list of all available missions Yes GET
200: Returns XML

405: Method not allowed
500:

/sessions/
Returns a list of all unfinished

mission-sessions for the logged in user
Yes GET

200: Returns XML
404: User is not logged in
405: Method not allowed

500:

/session/new/
Creates a new mission-session

for the specified mission
Yes POST

200: Returns XML of first puzzle
400: Request not in expected format

404: User is not logged in
405: Method not allowed

500: No such mission

/session/resume/
Resumes the specified unfinished

mission-session
Yes POST

200: Returns XML of first unfinished puzzle
400: Request not in expected format

404: User is not logged in
405: Method not allowed

500: No such mission session

/session/suspend/
Suspends the specified unfinished

mission-session
Yes GET

200: Mission was suspended
404: User is not logged in
405: Method not allowed

500: No open mission session

/session/puzzle/location/
Returns the location stub for
the currently active puzzle

Yes GET

200: Returns location XML of puzzle
404: User is not logged in
405: Method not allowed

500: No open mission session

/session/puzzle/data/
Returns the complete puzzle data

for the currently active puzzle
Yes GET

200: Returns data XML of puzzle
404: User is not logged in
405: Method not allowed

500: No open mission session

/session/puzzle/skip/ Skips the currently active puzzle Yes GET

200: Returns location XML of next puzzle
404: User is not logged in
405: Method not allowed

500: No open mission session

/session/puzzle/solved/
Marks the currently active

puzzle as completed
Yes GET

200: Returns location XML of next puzzle
404: User is not logged in
405: Method not allowed

500: No open mission session

Table 3.1.: List of resources provide by the API.

99

Special case: /puzzle/create/
Most of the aforementioned API methods do not have any noteworthy implemen-

tation details, as they simple execute CRUD (create, read, update, delete) operations.
The method create_puzzle which is accessible under the URI /puzzle/create/,
is more complex and will be discussed in more detail. It is responsible for accepting
data which will be turned into a Puzzle; or more precisely, it must unserialize XML data
sent over an HTTP POST request in order to instantiate a concrete Puzzle subclass
and all its supporting entities, and save them persistently.

All Puzzle classes share a common set of attributes - those inherited from the
Puzzle class. However, in most cases the Puzzle subclasses will add its own at-
tributes. The webservice is only capable of handling the common information, as the
processing of the puzzle specific data needs to be implemented by the Puzzle applica-
tion. The result is a webservice that is both generic and modular because the imple-
mentation details are consistently located within the puzzle application, and therefore
satisfies the principles of being "pluggable".

When the create_puzzle method is called the XML document will be transformed
into an object by lmxl.objectify(), which allows access to the XML document as if
it were an ordinary object. The common bits of the XML document (such as the name,
location, language, hints, etc), are casted from strings to their corresponding Python
data types (with the help from the utility methods in streetdroids.core.parse_utils),
and pre-populated into a Puzzle instance.

Because the XML document contains the type of puzzle that has been created, it is
possible to call the function for handling the puzzle type specific data. The implemen-
tation of that functionality needs to reside in the module webservice of the puzzle
package in the function new(). It receives the Puzzle instance as well as the objec-
tified XML document as arguments and is responsible for casting the Puzzle instance
to a concrete Puzzle implementation, and saving it as well as creating instances of all
supporting models.

3.2.4.5. Client implementation

To allow the client to access the game content and the game flow control a game API
client is required. The API client is an independent part of the client software that is able
to communicate local application calls to the remote server using the specially designed
protocol. The API client is implemented as an application library. It provides a local in-
terface to the remote server functionality. Since the client software is being written in
Java programing language the API client is also programmed in Java. The history of the
API client development starts with the first game prototype implementation. Since then
it has dramatically evolved. In the final application release the API client is expected to
become a fast, reliable and transparent interface between the client game implemen-
tation and the game server. Along with a transparent API functions implementation
the API client tends to provide tools for a comfortable work on transmitted data. An
API client package includes classes that help to convert formatted XML data into game
objects. It also includes functionality for the base64 encoding and XML parsing.

100

The server API in the client application is defined as a Java interface of server func-
tions. All the local API calls are done using that interface, which makes the client
architecture design very flexible - an implementor of the API interface can be easily
replaced even at runtime. It allows the client to stay compatible with several versions of
the communication protocol at the same time, if there is ever a need for it. This feature
promotes an easier further enhancement of the protocol.

Implementing the API interface the API client needs a way to access networking to
communicate with the game server. The latest client implementation uses an Apache
HTTP client package for this reason. The Apache HTTP client has been chosen be-
cause of its high quality implementation of the latest HTTP features (ApacheSoftware-
Foundation, 2008). Moreover, it is included as a default HTTP client into the Android
mobile framework32, which the current client application is being developed for. The
Apache HTTP client takes care of an entire HTTP communication part, and therefore
allows the API client to concentrate on the communication protocol implementation.
Among many other features the Apache client supports encryption33, which can be-
come important if it will ever be decided to protect the API from public access.

The latest API client source consists of one Java class that implements API function-
ality defined in the API interface and several helper classes. The helper classes include
API exceptions family and tool classes for retrieving data from exchanged XML doc-
uments. For paring XML content the tool classes use an official Java implementation
for the DOM parser standard provided by the Android mobile framework34. The DOM
parser has been chosen because of its ability to convert an XML document into a docu-
ment object model35. This gives an easy access to any document node at any time, and
simplifies navigation and search through a node structure. There are tough arguments
against DOM application in the mobile client code. The DOM parser can allocate a con-
siderable amount of memory to build a document object tree. Unfortunately memory on
a mobile client is one of the highly limited resources in the Android mobile framework36.
Considering this fact the DOM parser can be replaced by a less resource consuming
parser. Nevertheless the DOM parser will remain for a while because it is the easiest
tool to work with XML documents among others included. The client software develop-
ers team consists of students with different programing experience therefore the ease
in this particular case is a very influencing argument.

Though the API client included in the latest game client implementation has being
actively developed it still lacks a support for some API functions of a low implementation
priority. These functions are subject to development and are expected to appear in the

32“org.apache.http - The core interfaces and classes of the HTTP components” http://developer.
android.com/reference/packages.html

33“Supports encryption with HTTPS (HTTP over SSL) protocol” http://hc.apache.org/
httpclient-3.x/features.html

34Provides the official W3C Java bindings for the Document Object Model, level 2 core. http:
//developer.android.com/reference/packages.html

35The parser converts XML into the DOM http://www.w3schools.com/dom/dom_parser.asp
36“Don’t allocate memory if you can avoid it” http://developer.android.com/guide/practices/

design/performance.html

101

future library releases.

102

3.3. Puzzle implementation

3.3.1. General Aspects37

37Felix Oey, Hima Bindu Vudathu

103

Several ideas have been considered for developing different kinds of puzzles. Af-
ter a thorough brainstorming three different puzzles were decided to be implemented:
Hotspot puzzle, Drag and Drop puzzle, and Missingpart puzzle. In the following sec-
tions the generic aspects of the puzzles (what they are, where they are located, and
how they are implemented), will be described. Initially puzzles were implemented as
different individual puzzles. Later as the project group came up with the idea that more
puzzles can be developed by an online community, it was decided that there should
be a general way of implementing any puzzle with adaptations made to it. Therefore,
a generic puzzle class, which has different methods that can be implemented by the
specific puzzle classes as per the specific puzzle, was developed.

3.3.1.1. GenericPuzzle

Each puzzle inherits from a generic class called PuzzleActivity. There is also an-
other generic class called the Npc, which will be described later. The PuzzleActivity
class is an abstract class which extends from the Activity class of the android.app
package. This PuzzleActivity class also implements an interface called PuzzleAct
ivityInterface. The interface has different methods which are implemented by
the abstract PuzzleActivity class. First, the PuzzleActivityInterface is de-
scribed. Later, the PuzzleActivity class will be described and the other generic
classes like Npc and Puzzle will be described.

3.3.1.2. PuzzleActivityInterface

The interface has several common methods which are implemented by the generic
PuzzleActivity class. These methods can be overridden by the specific puzzle
class to alter the behaviour as it suits to the specific puzzle. The method’s signatures
in the interface are shown below. The functionality of the methods is described in the
PuzzleActivity class in the next subsection.

......

public void showItem(Item I)
public void showPuzzleItem()
public void showNPC()
public void hideNPC()
public void sayFeedback(String text)
int getCoinsLeft()
void onPlayPuzzle()
void onPuzzleSkipped()
Puzzle getPuzzle()
public void onWrongTry(String wrongTryText)
public void onWrongTry(String wrongTrySpeech)
public void wrongTry()

104

public void onRightTry(String rightTryMessage)
public void rightTry(String rightTryMessage)
public void rightTry()
public void onHintRequested(int coins)
public int giveHint(PuzzleHint hint) throws

PoorPlayerException, NoMoreHintsExceptions
public PuzzleHint giveHint() throws PoorPlayerException,

NoMoreHintsExceptions
public void solved(String contgratulationsText)
public void onGameOver()
public void givePlayInstructions()

3.3.1.3. PuzzleActivity

This is the generic class which implements the PuzzleActivityInterface. It groups
all the functions and methods that are common to all puzzles. These are described be-
low:

• having the start screen

• having the game screen

• having the item screen

• handling of NPC events and buttons

• having a bottom menu on the game screen

• showing the alert dialog when the puzzle is about to be skipped

The methods in the interface are described below:

public void showItem(Item i):
This method displays the item which the player might receive after successfully solving
the puzzle. Each puzzle has a different item, which is received on successfully solving
the puzzle.

public void showPuzzleItem():
This method displays the screen with the item received after solving the puzzle.

public void showNPC():
This method pops up the NPC of the specific puzzle to guide the player in solving the
puzzle.

105

public void hideNPC():
This method hides the NPC after the information of the puzzle is shown on the screen.

public void sayFeedback(String text):
This method gives feedback as the puzzle is played. It provides information that the
player has solved the puzzle successfully if the puzzle is solved. If the puzzle is not
solved, this method provides feedback of the same.

int getCoinsLeft():
This method is called when the player buys hints in trying to solve the puzzle. The
method returns the number of coins the player currently has.

void onPlayPuzzle():
When the player goes from the introduction screen of the puzzle explanation to the
exact puzzle screen, then this method is called.

void nonPuzzleSkipped():
When the player does not want to play the puzzle at all, or he gives up after a certain
number of tries, this method is called. The player has to click YES when the puzzle skip
dialog screen is displayed.

Puzzle getPuzzle():
This function gives the developer to get a pointer to the data that has been downloaded
for the current puzzle.

public void onWrongTry(String wrongTryText):
This method is called by the generic puzzle activity class when the player tries to solve
the puzzle but fails. First of all, the implementation of this method in the generic puzzle
activity class decreases the number of available tries. If the player still has free tries
the NPC pops up and tells the player the text given as a parameter. In case the player
is out of free tries, the application checks if the player is still able to proceed (if he has
enough coins and hints). The player is shown a NPC that gives him the possibility to
buy a hint. If the player can, the method locks the puzzle which forces the player to buy
a hint. Otherwise the game is considered as over and the onGameOver() method is
called after the player hides the NPC.

public void onWrongTry(String wrongTrySpeech):
This method redirects to the onWrongTry method. The method is invoked with a given
text parameter.

106

public void wrongTry():
This method is the same as the one described above with just one difference. Here the
text displayed by the NPC is the default text which tells the player the number of free
tries that are still left.

public void onRightTry(String rightTryMessage):
This method is called every time the player makes a correct try in the game. The
implementation of this method in the generic puzzle activity class displays the NPC,
who gives a feedback to the player about the correct action.

public void rightTry(String rightTryMessage):
This method simply redirects the call to the onRightTry method and sets the message
the NPC is going to tell the player.

public void rightTry():
This method calls the rightTry method with the generic positive feedback message.

public void onHintRequested(int coins):
This method is called when the player clicks the hint button on the NPC menu to get
a hint for solving the puzzle. The implementation of this method in the generic puzzle
activity class gives the player a random hint if the player has enough money to buy one.

public int giveHint(PuzzleHint hint) throws PoorPlayerException,
NoMoreHintsExceptions: This method displays the NPC showing a hint in the
textbox. The method might throw an exception when the player does not have enough
coins to buy a hint. This method deletes the given hint from the puzzle hint array be-
cause the same hint can’t be used twice in the puzzle. It might also throw an exception
when there are no more hints available.

public PuzzleHint giveHint() throws PoorPlayerException, NoMore
HintsExceptions: This method gets the first hint from the puzzle hint array and
shows the hint to the player. The hints are filtered by the price, which means that only
the hint for which the player has money for is being chosen and displayed.

public void solved(String contgratulationsText):
This method is called when the puzzle is successfully solved, and a screen with the
NPC congratulating the player is displayed. When the NPC is hidden the puzzle intro
screen is displayed and the next puzzle instruction screen is shown to the player.

107

public void onGameOver():
This method is displayed when the game is over. The game will be over when there are
no more hints available, and the player cannot buy any more hints and has no way to
solve the puzzle. This method is not called when the puzzle is skipped.

public void givePlayInstructions():
This method displays the NPC with a little bubble box that contains the instructions of
how to play the game.

3.3.1.4. Puzzle class

There is also another class called the puzzle class. This class is the base class for all
the kinds of puzzles present in StreetDroids. The class has a constructor and methods
which are used for downloading the puzzles and parsing the data. The functionality of
the constructor and methods are described below:

public Puzzle(XmlDocument xml, GameHttpClient httpClient) throws
RequestFailedException: This is a constructor which creates an instance of the
puzzle from an XML document received from the server. Most of the binary data used
in the game is not encapsulated into the XML document, so the parser requests the
HTTP client to download that data from the server using links found in the document.

protected void parse(ParsingContext pc) throws RequestFailed
Exception: This method sets the values of internal variables to the ones fetched from
the XML document.

protected void parseScreens(ParsingContext pc) throws Request
FailedException: This method is used to read the data specific to different puzzle
screens. The data is fetched from the XML document where the current tag of the
parsing context points to.

Protected void parseHints(ParsingContext pc):
This method is called to parse the data stored in the hints tag in the puzzle data xml
document.

protected void parsePuzzleContent(ParsingContext pc) throws
RequestFailedException: This method is called to parse the puzzle data. The
implementation from the generic class does not do anything inside this method as it
does not know how the data is being parsed. The child class needs to override this
method and parse the data as required for the puzzle.

108

protected void parseMeta(ParsingContext pc):
This method parses the meta tag from the puzzle xml document.

protected void parseItem(ParsingContext pc) throws Request
FailedException: This method is used for constructing a new object from the XML
data.

public int useFreeTry()throws NoFreeTriesException:
This method decreases the number of free hints. If no more free hints are left, an
exception is thrown.

public PuzzleHint useHint(PuzzleHint hint)throws NoMoreHints
Exceptions: This method fetches a hint from the array of hints and returns back.
The used hint is removed from the hints collection. The method Public boolean
canBuyPlayHint(int money) checks if there are more coins left for the player to
buy hints.

In some of the above methods a RequestFailedException is thrown. This rep-
resents an exception which occurs when working with the client. Such an exception is
thrown by a GET or POST method when network operations cannot be completed. The
main logic of the game does not care what exactly went wrong in network operations,
such a type of exception is thrown when any problem with parsing or downloading of
data occurs.

3.3.1.5. NPC package

This package contains generic classes which are related to the non-playable char-
acter, like representing the NPC, the view of the NPC, the npcviewevent and the
npcviewevent listener.

In the following subsection the goal, location, and how the specific puzzles are im-
plemented are described in a brief manner. Every puzzle has an Activity with the name
of the puzzle which extends the generic puzzle class and also another class which
includes the logic specific to that particular puzzle. For example the Drag and drop
puzzle has a class named DragndropActivity which extends the generic abstract
class PuzzleActivity. The Drag and Drop puzzle also has another class named
DragndropPuzzle which has the logic specific to dragging and dropping parts of im-
ages in order to solve it.

3.3.1.6. Drag and Drop Puzzle

This is one of the three puzzles which have been implemented. As the name indicates
the objective of the puzzle is to drag a piece of image present on the top of the screen
and place it on the correct location on the picture present below it. The location in which
the puzzle was implemented by the project group is the Town Hall (Rathaus) located in

109

the city center of Bremen. Other locations in the city of Bremen or elsewhere, together
with different content, can also be used to implement such a type of puzzle in future.

The puzzle is implemented by using the generic abstract class and also other classes
which aid in developing the logic of the puzzle.

3.3.1.7. Hotspot Puzzle

This is the second type of the three puzzles which have been implemented. The goal
of this puzzle is for the player to find a certain place on the picture shown by touching at
various places on the screen. In the hotspot puzzle implemented by the project group
the location of this puzzle is the Bremen market place, and the picture of the Roland
is shown to the player. The player has to locate the exact spot on the Roland which is
related to the granting of market rights to the city.

This puzzle also extends the generic abstract class and also has two other classes.
One class called HotSpotPuzzle, which has code related to the logic of the puzzle,
for example, where the image is to be touched, what happens when a wrong spot is
touched. The other class is the HotSpotImageView class which describes methods
which show the area where the player should touch. Other locations or images can be
used to implement another puzzle of the same type just as in the case of the drag and
drop puzzle.

3.3.1.8. Missingpart Puzzle

This is the last type of implemented puzzle. The goal of this puzzle is to find the part of
the image which is missing from the screen by using the mobile device’s built-in camera
to take a picture. This picture is then sent to the server where it is compared with the
answer picture. After the pictures are compared, feedback is sent to the player telling
if the picture taken was right or wrong. The location of this puzzle, as implemented by
the project group, is the Schlachte. Again the location can be not only the Schlachte
but other places as well to implement another puzzle of the same type.

The puzzle has two classes: One is the class which extends the generic abstract
class and the other one is the MissingPartPuzzle class which contains code to
take a picture and send it to the server. The server receives the image and compares
it using image recognition, and if correct sends the entire correct image to the client,
and if wrong the player has to try again. The main logic of this puzzle is the image
recognition part which is explained in section 3.3.2.

3.3.1.9. Adding a new puzzle

If anyone wants to implement new puzzles there are two main classes to be created.
One class extends the generic abstract class, and the other contains logic specific to
that puzzle. The developer can also separate the view from the logic and create a
new class for the view. It is up to the developer to decide how he wants to implement
the puzzle. It is important to understand how to extend the generic PuzzleActivity

110

class and override the functionality of the methods in such a way that will suit a specific
puzzle.

Developing a new puzzle can be explained with the help of an example. If a developer
wants to develop another puzzle of the type Missingpart puzzle, basically two classes
have to be developed. One class extends the Puzzle class, it handles the initial commu-
nication part. While the player is moving to the location of the puzzle the downloading
and parsing of data from the web server is done. Here, the initial image’s width and
height are downloaded as the player is going to the location of the puzzle.

The second class is the Activity class, which extends the PuzzleActivity
class. Here the logic of the puzzle is coded. The onPlayPuzzle() method has to
be implemented for initialization of the puzzle, i.e. preparing the holders and setting the
image for the puzzle. This class makes use of the generic NPC class for various actions,
like popping the NPC to guide the player in solving the puzzle, hiding the NPC when
the player is solving the puzzle, providing respective feedback when the player solved
the puzzle, etc.

111

3.3.2. Technique for Image Recognition38

38Alexander Tyapkov

112

This section describes the technique used for image recognition lying behind the
Missingpart puzzle. The best way to describe the puzzle is to look at it from the user’s
point of view. Coming to the right location shown on the mobile device the user re-
ceives an image with a missing part. The goal of the puzzle is for the user to explore
her surroundings and find the part of the image that is missing, then take a picture and
eventually receive positive or negative feedback from the application about the correct-
ness of the answer. The weak part of the puzzle’s flow described above is the server
side, which recognizes the image by comparison with the original. The stated task was
to create a stable algorithm allowing to compare two images and to receive low-error
response about the level of their similarity.

3.3.2.1. Implementation

Libraries and existing algorithms
After the problem was defined the working team began to investigate available

libraries which could help to solve it. Time limitation and lack of experience in image
recognition techniques forced the team to find already existing algorithms and integrate
them into the puzzle. While working on another type of puzzle, the jigsaw puzzle, where
the player should connect pieces of a split image, the project team used the Python
Image Library (PIL). Unfortunately, the functionality of this library covers only the basic
operations for image processing. That was not enough for the project’s purposes and
the research was continued. Eventually it led to the Open Source Computer Vision
Library (OpenCV), which is an open source library written in C and C++. The library
has a rich functionality, and is considered to be one of the best libraries for working
with images. Additionally it has the necessary set of methods allowing comparison of
images using a variety of techniques. Two of such techniques were studied, and then
integrated into the puzzle.

The first technique is based on the comparison of an image’s histograms. As the
OpenCV tutorial says “histograms are a classic tool of computer vision and find uses
in many applications” (Gary Bradski, 2008) . Histograms are simply collected counts
of underlying data organized into a set of predefined bins. They can be populated by
counts of features computed from the data, such as gradient magnitudes or any other
characteristic. The idea standing behind this technique is simple and based on the
comparison of image histograms using different options. The comparison of histograms
was used in our puzzle while counting the entropy of the images. That was done using
PIL library.

Another method which was considered to be used in our algorithm is template match-
ing. The tutorial mentions that “it is not based on the comparison of the histograms;
rather, the function matches an actual image patch against an input image by sliding
the patch over the input image using one of the matching methods”. In order to use the
described method we have imported the OpenCV library into our project.

Implementation details

113

Figure 3.6.: The activity diagram illustrating the main steps towards image comparison.

The illustration of the developed algorithm using a simplified activity diagram is
presented in figure 3.6). For simplicity the diagram shows both server and client side
actions and does not show the decision boxes. Some of the steps were not programmed
and should be considered only as a way to strengthen the algorithm.

Before the user can launch the puzzle, the mobile device, or in other words the client
side, should request the necessary data from the server. This data includes the image in
png format with the cropped area the user should find, location of the puzzle consisting
of x and y coordinates, activation polygon and accelerometer data of the corresponding
image. All the information about the puzzle is stored on the mobile device and no more
requests are required until the image has to be checked.

Initially, the algorithm functions were split between the client and server sides. This
allows executing some check procedures on the client side before sending the image to
the server, what saves internet traffic and eventually user’s money. At this step we are
grabbing the accelerometer’s data when the user takes a picture, then comparing it with
the accelerometer’s data attached to the missing part image, which was received from

114

the server. The idea lying behind the comparison is based on the fact that the original
image has only one set of accelerometer coordinates what means that one image can
be made only from one position.

The implementation of this part of the algorithm causes another problem. All the
images received from the server should have a set of attached coordinates, showing
from which position the picture was made. In order to handle it a small application
which loads the user’s images from the mobile device straight to the server’s image
gallery was developed. In this case the creator of the puzzle can use the mobile device
as a tool to attach the necessary context information to the images.

After the described procedure the picture sent from the client side is checked to see if
it was taken in the correct location and position. This increases chances that the picture
corresponds to the original one. Nevertheless, the checking of the image is continued
on the server side. The first step to approve the image is to calculate the entropy and
compare it with the original entropy. Entropy in this case is a measure of chaos which
can be calculated using existing functions based on the comparison of the histograms.
Comparison discards all dark or overexposed images, as well as all the rest of the
images which do not have a correspondent level of entropy.

The next step is to prepare the user’s image for further image comparison and check
if the size and mode correspond to the original ones. If differences are detected the
algorithms crop the user’s image and changes the mode. In this case the possibility of
a positive feedback decreases because of the size adjustment. Accordingly, the best
results are shown when the size of the original image is equal to the size of the image
saved in the database through the web-editor. The developed application allows making
pictures on the mobile device, which helps to solve the problem, because the size and
the ratio of original and the user’s images are equal.

Coming back to the used algorithms, it should be noticed that the template matching
algorithm needs a patch that will be sliding over the checking image. The patch is
cropped from the original image and the image with the “hole” by overlapping them.
Another solution was to not save the original image into the database, but only the
patch. Nevertheless, it was kept for testing reasons. In order to proceed the patch
should be passed to the image recognition function provided by the OpenCV library,
which in turn returns a gray-scale image. Depending on the used algorithm the most
white or black areas of this image show the regions with the biggest similarities.

Received answer simplifies the task. The gray-scale image showing the maximums
and minimums allows to check the dispersion of these regions and to reason whether
the patch is a part of this image or not. We have decided to simplify the algorithms
according to the requirements of the puzzle and check only if the point of greatest
similarity is situated in the coordinates of the patch, and therefore check the similarities
between the original and the user’s image.

Testing details
A testing cycle was used while developing the algorithm. It means that the core

functionality was checked straight after it was programmed. The core of the algorithm

115

Figure 3.7.: Testing image

Figure 3.8.: Patch presenting the answer from a hypothetical user

are the functions responsible for the template matching algorithm, searching the maxi-
mum similarity and checking the coordinate’s correspondence. All the additional com-
ponents which make the image recognition algorithm stronger were tested in the same
way, while they were being added.

The core functionality of the developed algorithm can be illustrated by a simple exam-
ple. For testing reasons we will take any appropriate testing image and area cropped
from it (figures 3.7 and 3.8). This area presents a hypothetical answer of the user
received from the mobile client. By sliding the cropped image against the OpenCV
function it returns a gray-scale image (figure 3.9) allowing to check if the patch is a part
of the picture or not.

It should be noticed that the image matching function that is included in the OpenCV
library provides a set of methods for image matching. The set of experiments showed
that the normalized correlation coefficient matching method better fits to the algorithm

116

Figure 3.9.: Image returned after applying the function from OpenCV library with the
point of similarity and difference.

used in StreetDroids, and also shows better results. All the later tests were done using
this method.

The image returned after applying the function (figure 3.9) has a different resolution
from the original and needs to be adjusted. Black and white points on the image show
the points of highest similarity and difference correspondently. After calculating their
coordinates it can be checked if they are situated inside of the cropped area. We
assume that if the point of similarity is situated inside of the cropped area than it used
patch is the part or the image.

117

3.4. Graphical interface

3.4.1. Technical Aspects39

39Felix Oey, Hima Bindu Vudathu

118

This section describes the technical aspects of the graphical interface in the Android
client, which involve buttons, animation, orientation, picture format and drag and drop.

3.4.1.1. Buttons

There are two types of buttons in Android: the regular button and the image button. Fur-
thermore, both represent push-button widget and both are rectangle-shaped buttons.
Another possibility to have a non-rectangle-shaped button is by using an ImageView
and applying a listener class on the image. Therefore, three of them can be pressed
or clicked by the user to perform an action. Thus, it gives the developer the freedom to
handle a button event when a user press or click a button. (Google, 2010d)

The regular button displays a button with or without text on it. It represents a push-
button widget where attributes like width, height, background color, margins of the but-
ton can be set. In addition, the size, font face, style, alignment, and color of the text can
also be set.

Image button displays a button with an image instead of text. By default, an image
button looks like a regular button with the default button background that changes color
during different states. However, to remove the standard button background image the
developer can define his own background image or set the background color to be
transparent. Moreover, developers can also define a different image for each state to
indicate whether the button is in a focused, selected, clicked, or pressed state. (Google,
2010f)

Image view displays an arbitrary image, such as an icon. Furthermore, the ImageView
class can load images from a choice of sources (such as resource or content providers),
taking care of computing its measurement from the image so that it can be utilized in
any layout manager, and it provides many display options such as scaling and tinting.
Moreover, to be used as a button, an action listener class must be linked with the image
to perform the action. (Google, 2010g)

An event listener is an interface in the View class that contains a single callback
method. The Android framework will call these methods when the object view to which
the listener has been linked is triggered by user interaction with the item in the user inter-
face. There are various event listeners such as onClick, onLongClick, onFocusChange,
onKey, onTouch, and onCreateContextMenu. Each of them defines various events
that can happen on an object.

onClick is an event that is called when the user either touches the object (when in
touch mode), or focuses upon the item with the navigation-keys or trackball and
presses the suitable "enter" key or presses down on the trackball. (Google, 2010n)

onLongClick is an event that is called when the user either touches and holds the
item when in touch-mode, or focuses upon the item with the navigation-keys or
trackball and presses and holds the suitable "enter" key or presses and holds
down on the trackball for one second.

119

onFocusChange is an event that is called when the user navigates onto or away from
the item, using the navigation-keys or trackball.

onKey is an event that is called when the user is focused on the item and presses or
releases a key on the device.

onTouch is an event that is called when the user performs an action qualified as a
touch event, including a press, a release, or any movement gesture on the screen
within the bounds of the item.

onCreateContextMenu is an event that is called when a Context Menu is being built
(as the result of a sustained "long click").

3.4.1.2. Animation

Animation can be applied to views, surfaces, or other objects. There are alpha, rotation,
scale, and translate animation. All of them are represented in the animation widget that
handles tweened animations. (Google, 2010c)

Alpha animation controls the alpha level of an object, fading an object in and out.
Moreover, this animation ends up changing the alpha property of a transformation,
which defines the transformation to be applied at one point in time of an animation.
(Google, 2010b)

Rotation animation controls the rotation of an object. Furthermore, this rotation takes
place in the X-Y plane. The point to use for the center of the rotation has to be specified,
where point (0,0) is the top left point in the screen. (Google, 2010k)

Scale animation controls the scale of an object. In addition, unlike the rotation anima-
tion, the point that is used in scale animation is the center point in the object. (Google,
2010l)

Translate animation controls the position of an object. Thus, the animation tweens
an object from one point to another point in the screen. An x and y position have to be
defined from the initial point of animation to the end point of animation. Hence, it will
be a straight motion from the initial point to the end point in the animation. Moreover, a
time value has to be set to define the speed of an animation. (Google, 2010m)

In this game, animation appears in the Non Playable Character (NPC) menu that
appears to give information to the player along the game. That animation used is the
translate animation where the character slides in and out of the screen.

3.4.1.3. Picture format

There are several image formats that are supported in Android. JPEG(.jpg) image
format is supported for both encoding and decoding, whereas GIF(.gif), PNG(.png),
BMP(.bmp) are only supported for decoding. During the development of the game,
Adobe flash (.swf) and scalable vector graphic (.svg) image format were not supported.
(Google, 2010h)

120

3.4.1.4. Drag and Drop

When an action takes place in the user interface, meaning that a user interacts with the
screen, a listener listens to this action. Moreover, in the drag-and-drop puzzle, there
are two main user interface listeners to handle the user event: the touch event and the
drag event. In short, in the very top of the screen a listener of the class always stands
by to monitor finger motion from the user. (Google, 2010i)

In the touch event whenever a user touches an object that is linked into this lis-
tener class (MotionEvent.ACTION_DOWN), the x and y coordinates where this action
happened are firstly saved as initial parameters for later calculation.

In the dragging event, there is a parameter called DRAGGING_CONDITION_DISTANCE
that is set into a certain pixel size to indicate whether the range of a motion is recog-
nized as a dragging or just touching. Then, the listener checks whether the user’s
motion is surpassing this condition. Thus, if this condition is fulfilled, the event will be
acknowledged as a dragging event. If not, it is just a mere touch event. In short, if the
player touches the icon from the top panel and moves the finger down exceeding this
DRAGGING_CONDITION_DISTANCE limit, the intention is treated as a dragging, so the
dragging event of the piece starts.

The x and y coordinates of the piece that is dragged are also refreshed according to
the user’s finger position on the screen. Hence, the piece will move along according
to the finger movement. Then, after the piece dragged into certain position, and the
user release the touch, a listener senses this event (MotionEvent.ACTION_UP) and
locates the piece on the last finger position when the user put the finger on the screen.

3.4.1.5. Screen Orientation

StreetDroids has been implemented in the portrait mode orientation. For future work
it is possible to extend the game to handle the accelerometer event orientation, both
in the portrait and landscape modes. Therefore, another design layout for each screen
would be needed. The designer just has to make another layout folder (for example
layout-landscape) inside the resource folder and put the xml file with the same name
from the layout folder in this other folder. In brief, each object positions in this other xml
have to be relocated in the screen.

The layout for the camera class by default is in landscape mode, even the camera
application from Android itself is developed in landscape mode. Thus, it is impossible to
change this layout into portrait, because by doing this the image will be heavily distorted.
In this special case the puzzle was implemented in landscape mode. However, further
extension is also possible to have this puzzle work in portrait mode.

121

3.4.2. Design Aspects 40

40Joatan Preis Dutra, Catalina Payán

122

This section explains how the principles and design guidelines of Human-Computer
Interaction (HCI) and Graphical User Interface (GUI) were applied for the game Street-
Droids in order to overcome the challenges presented when designing for small screens,
and is organized as follows: In subsection 3.4.2.1 (Design Consideration for Small
Screens) was elaborated on the problems faced by designers of applications for mobile
devices. In subsection 3.4.2.2 (Design Concept for the Game) presents the guidelines
offered by HCI and GUI theories which were used to tackle the design problems. It is
discussed the research for the design of icons, menus, game interface, navigation and
characters, experiments with colors and present the final choices. In section 3.4.2.8 it
is placed the final considerations.

3.4.2.1. Design Considerations for Small Screens

If on one hand current smart phones have computing power largely superior than
high-end desktop computers of a couple of decades ago, on the other hand they are
equipped with very small screens. Small screen size is, therefore, one of the major
issues faced by designers of mobile applications. In this project, for example, mobile
devices with 480x320 pixels of screen resolution was targeted. The main challenge
was to find ways of displaying the needed information in a friendly manner, so that
users have a pleasant experience while at the same time having complete access to
the data and actions appropriate for a certain context. For this purpose, concepts of HCI
and GUI design were applied to overcome usability issues and to explore the possible
utilizations of the limited space at hand. The result was an iconographic and simple
interface which was well received by the beta testers at the preliminary evaluation. It
is possible to believe that the application of HCI and GUI theoretical design guidelines
was essential to the development of a successful user-friendly interface with an intuitive
navigation.

The interactive features present on smart phones, such as the touch interfaces found
in increasingly affordable devices, give developers the opportunity to explore vast new
possibilities. By using new technologies and devices (like the T-Mobile G1 Android41),
new features are being developed, like context and location-awareness – one of the
StreetDroids characteristics - which can be used to make games that are more con-
nected to the real world and to the community around the user.

“As mobile phones move beyond telephony into areas as diverse as Inter-
net access, personal entertainment, content creation, and interaction with
so-called smart and pervasive computing environments, exciting new op-
portunities for intelligent auditory presentation behaviors arise. In recent
pervasive-computing research, for instance, users intuitively navigated their
way to undisclosed outdoor locations using a context-dependent, direction-
ally adaptive auditory display (Etter & Specht, 2005). The underlying system
uses global positioning data and a geographical information system to infer

41The T-Mobile G1 was the chosen Android mobile device for the StreetDroids Project. Further information
about this device is available in: http://www.t-mobileg1.com/

123

the mobile user’s geographical context. Navigation cues are then rendered
by adaptively panning and filtering music selected by the user to correspond
with his or her direction of travel.” (Kortum, 2008 Pg 189)

The used approach to develop the design interface was based on HCI concepts since
“design, usability and interaction are recognized as the core issues in HCI” (Ghaoui,
2006 Pg XIV). Furthermore, to work on small mobile screens is a challenging task.
In order to enhance the interaction, studies on HCI and GUI were considered at the
development process. For instance, the elements of the initial screen followed one of
the principles of GUI design. According to Galitz, “the array of alternatives available to
the user is what is presented on the screen or what may be retrieved through what is
presented on the screen - nothing less, nothing more” (Galitz, 2008). From this principle,
only what the user needs to know about the application and the available options should
be presented on the screen, affecting how the design is developed.

Ronchi pointed that a well-developed interaction design could serve as bridge to fill
the gap between man and machine, enhancing the interaction between them:

“The aim of interaction design is to close this gap (in man/machine commu-
nication) by bringing usability into the design process. This means develop-
ing interactive products that are easy, effective, and enjoyable to use from
the users’ perspective.” (Ronchi, 2009)

However, there are no easy rules to define which solution is the best when displaying
content on the screen. Attention must be paid to aspects like intuitive usability, easy
navigation, clear information, nice layout, harmonious colors and internationalization,
also respecting the values of HCI/GUI in a well developed perspective. That is the base
of the design concepts for the StreetDroids project.

StreetDroids was developed for Google’s Android platform and, as mentioned, tar-
gets devices with 480x320 pixels screens. One of the features of the platform is the
possibility of using the screen in a vertical or horizontal position. Some applications
developed for Android can be used in both positions, which demands a flexible and
adaptive design. That represents a change in the design paradigm since it is no longer
possible to design for a single static position and view. It also makes it harder to pre-
dict patterns of user behavior because all the content might change according to the
device’s position. Taking this design challenge into consideration and looking for a so-
lution that can clarify the structure of the game, the project fixed the vertical position for
the game format. That choice considered also the most common position for handling
a mobile phone. This decision not only facilitated the development, which was then car-
ried out using a width of 320 pixels and height of 480 pixels, but turned the interactions
clear and obvious for the user.

Once decided, it was necessary to keep in mind that the design for mobile requires
special attention about the use and optimization for the small space available, where the
choice of the displayed information is crucial for the navigation and performance. “De-
signing for a mobile application is really quite a bit different than for desktop software.
Limitations of the device itself, including screen real estate and user input methods,
force us to make different choices.” (Bondo, 2009)

124

Another issue around screen usability is the visualization of elements and possibilities
of navigation, where a minimum height and width should be considered. The displayed
elements cannot be too small, considering that some users may have visual deficien-
cies. Also, the projected game has an outdoors context, which means that the lightness
of the environment may interfere with the visualization as well. “For small-screen inter-
faces, human factors designers face the challenge of displaying all the information they
want to present, while making sure that what they present is not too small to be seen
by the user.” (Kortum, 2008 Pg 324)

“While devices such as mobile telephones and MP3 players have continued
to shrink, the problems with controlling and using these miniature devices
have grown. From the physical ergonomics associated with using the sys-
tems to the navigation of tiny menus, the new systems have proven to be
substantially different and more difficult, to use than their bigger brethren.”
(Kortum, 2008 Pg 10)

These considerations were crucial for the design development of the mobile game. It
is clear that the game could not be developed only by taking concepts of design of
desktop applications and shrinking to a 320 x 480 pixels screen. It was sought to treat
the mobile screen as an independent media, respecting its size limitations and exploring
every pixel available in a user-friendly way.

The touch-screen feature is another factor that should be considered for screen de-
sign optimization, where the player uses fingers instead of a mouse or joystick. Fingers
are less accurate and demand a larger area if compared to a pointer mouse.

“(...)the finger is not a mouse . On the desktop, a user can use a variety
of input devices — such as an Apple Mighty Mouse, a Logitech trackball,
or a laptop touchpad. But, on screen, the mouse pointer for each of these
pieces of hardware is always identical in shape, size, and behavior. (...)
Additionally, finger input does not always correspond to a mouse input. A
mouse has a left click, right click, scroll, and mouse move. In contrast, a
finger has a tap, flick, drag, and pinch.” (Wagner, 2008)

Some Android devices have a “trackball” (as the mentioned T-Mobile G1 (T-Mobile,
2009)) which works as a mouse. In the design process for the interactions, it was as-
sumed that this hardware was not available, because not all mobile devices developed
for the Android platform actually contain it. It was assumed users would use their fin-
gers to interact with the game. In the next sections it is presented the solutions and
concepts applied for the StreetDroids game.

3.4.2.2. Design Concept for the Game

Albert Einstein once suggested to “make everything as simple as possible, but not
simpler” (Kortum, 2008). Evidently he was not referring to design for mobile screens,
but this axiom can be perfectly applied for it. An intuitive and attractive user interface is
usually a familiar user interface. (Tidwell, 2006)

125

“When you design user interfaces, it’s a good idea to keep two principles in
mind: 1. Users don’t have the manual, and if they did, they wouldn’t read it.
2. In fact, users can’t read anything, and if they could, they wouldn’t want
to. These are not, strictly speaking, facts, but you should act as if they are
facts, for it will make your program easier and friendlier.” (Spolsky, 2001)

These premises were applied when developing StreetDroids to support different types
of open air scenarios. The main idea was to offer an intuitive interaction scheme. One
of the features of the game is that users can create their own maps and characters
through an online platform available at www.streetdroids.com. However, the design
process started to be developed based on a default map and mission created using the
Old City of Bremen as scenario, with a historical emphasis. This map choice, together
with the Master Project’s name (mobileHIVE42), were the inspiration elements for the
visual elements, always aiming the user-friendly interaction.

“The audience must be captivated, but at the same time, delivered an easy-
to-use, well-polished title. The aesthetics of the game are important, but
the functionality is equally critical. The app must perform flawlessly, or your
judges will call you out.” (Hennessy and Kane, 2009)

Taking into consideration the aesthetics and functional aspects, the game starts with an
iconographic main menu, where the user can access the main features and information
about the game, such as Play Game, Language, Quit, Settings, Info/About and Help.
Figure 3.10 shows a screen-shot of the main menu, where the icons are followed by
the message: “Please select one of the buttons”. The logo of the game appears on top
and disappears on the other screens when it is not needed, opening space for other
elements.

3.4.2.3. Icons and Menu

Each button in the main menu has a hive capsule format, originally created as reference
to the Master Project’s name and logo. The hexagon format of each button fits in a well-
balanced distribution on the screen, surrounding a centered image which symbolizes
a mobile irradiating information, as shown in Figure 3.10. To enhance the meaning
behind each button, it was chosen the use of icons.

“The universal nature of icons avoids the idiosyncrasies of different lan-
guages. They also speed up the rate of input by removing inferable con-
stituents of communication, such as prepositions. These advantages have
made icons pervasive in modern computing systems and ubiquitous in com-
munication and assistive aids.” (Ghaoui, 2006 Pg 298)

The menu shows two types of options: ENABLED (with ON and OFF status) and DIS-
ABLED actions. In Figure 3.10 the “Language” and “Settings” were disabled (not imple-
mented, for technical reasons, in the first moment), and the others enabled. After the
42See “mobileHIVE” logo and description, at Appendix.

126

Figure 3.10.: Initial screen with the main menu and logo.

Figure 3.11.: Icons developed for the main menu.

user clicks in one of the enabled buttons, it changes to an ON status, with color and a
centered white, bright icon, as shown in Figure 3.11.

The main navigation buttons were based on an iconographic concept, divided in three
packages:

• Main menu icons (Figures 3.10 and 3.11).

• Puzzle icons (Figure 3.12). During a puzzle the user can ask for the Non-Player
Character (NPC) help, which will offer some options as hints, information about
the puzzle and option to quit.

• Navigation icons (Figure 3.13). These icons are used to help the player during the
game, giving the status feedback about her performance, such as collected coins
and items, and also offering the NPC help and accessing the compass.

Some research on the appropriate symbols to use for the icons was made, in order
to get the proper metaphor for each action, maintaining the visual consistency for each
icon group. The idea was to use the most well known concept for those actions and

127

Figure 3.12.: Icons accessed by the NPC during a puzzle.

Figure 3.13.: Regular icons for the navigation during the game.

metaphors, allowing a meaningful interpretation even in a multicultural environment.
Also, the research went further and also it was considered the way in which players
interact and navigate with the game using their fingers on the touch-screen:

“User interface designs for touch screens must carefully consider the size of
and spacing between touch-activated buttons and icons so that the user’s
inputs will be accurate. Usually, the larger the button, the easier it is for
users to accurately point to it. But often, computer screen space is limited.
Designs must trade off between button size and spacing that maximizes ac-
curacy, and the ability to support the desired functionality for a given screen.
(. . .) There was a significant difference among button/icon sizes. People
performed best when it was equal to or bigger than 40*40 pixels.” (Sun et al.,
2007)

This rule about the size of buttons was observed. The navigation menu in the bottom
of the screen was directly influenced for this touch-screen factor, where the available
buttons followed the minimum height of 46 pixels, with width changing from 99 to 56
pixels, according to the game scenario, as shown in figures 3.14 and 3.17a.

3.4.2.4. Colors

The composition of the design could be not considered complete without paying special
attention to the selection of colors. The colors of the interface evoke answers and stim-
ulation. “One of the major challenges when working with color is finding a set of colors

Figure 3.14.: Bottom Menus used on Game, during a Puzzle and Map, respectively. All
buttons are above 40 x 40 pixels dimensions, improving the perception by
the user.

128

Figure 3.15.: Goethe’s Color Wheel.

that work well together. When colors look good together, the effect is often referred to
as color harmony” (Fox Pg 45). Sir Isaac Newton invented the first color wheel. He
split white sunlight into red, orange, yellow, green, cyan, and blue beams, and then
joined the two ends of the color spectrum together to show the natural progression of
colors. Newton associated each color with a note of a musical scale. A century after
Newton, Johann Wolfgang Goethe began studying psychological effect of colors (figure
3.15 (Irgtel, 2010)). Colors can be used to create illusions, sensations and luminosity in
a layout, creating contrasts and harmonies in the screen. (Moore and Simpson, 2007)

The color wheel served as basis for further studies about the use of colors. One
interesting result is about the proper combinations of colors, which can be verified using
the wheel. By positioning a square inside it, the corners will point four colors which after
mixed will result in Grey. (Fox, 2005 Pg 48). The Grey color can be considered as a
neutral one, being ideal for background combinations. (KMBdesigns, 2010).

This balance of colors was used for the background colors at the StreetDroids’ screen.
This process is illustrated in figures 3.16a43, 3.16b and 3.16c44. The square touches,
in a clock-wise rotation, the orange, yellow-green, blue and red-violet areas. Extracting
the tunes, they were applied in a soft version to the map that is the background of the
game.

3.4.2.5. Game Interface

Optimization of space, simplicity, metaphorical icons and symbols, and direct navigation
were the key elements that guided the development of the game interface.

43Image modified from(Fox, 2005)Pg 48.
44The background image was taken from a selection on the map of the city of Bremen,

dated from 1910, available at the online library of the University of Texas at Austin at
http://www.lib.utexas.edu/maps/historical/baedeker_n_germany_1910/bremen_1910.jpg

129

(a)
.

(b) (c)

Figure 3.16.: (a) Selected Quadrant inside a Color Wheel. (b) Created color scheme
based on the quadrant in Figure 3.16a. (c) Game Background with the
colors applied above map layer with transparency property.

“Typically, a graphical user interface draws on a user’s environment to pro-
vide a metaphorical representation of the user’s tasks. A metaphor provides
an analogy to concepts already familiar to the user, from which the user can
deduce the system’s use and behavior. Icons can express the metaphor
directly, as graphical representations of the metaphorical objects. They may
also directly represent a physical object. Icons are distinguished from other
symbols on screens by the fact that they represent underlying system func-
tions. Icons represent the objects, pointers, controls and tools making up
the domain of an application and that users manipulate in doing their jobs.
They can also represent status indicators used by the computer system to
give information to the user and to mediate user interactions with software
applications.” (ISO/IEC, 2000)

The metaphorical elements were not exclusive for the navigation buttons, but also ap-
plied to the entire interface, including background, NPC and action feedback during the
game. One example is how the NPC “talks” to the player using the metaphor of comics’
bubbles (balloons), as shown in Figure 3.17a. More than just offering a functionality, it
is necessary to coordinate the graphic elements in order to provide a compatible and
comprehensive visual rhetoric. In this way, the use of familiar elements helps to en-
hance the comprehension of the situation by the player. In this example, it is clear that
the text displayed on comics’ bubbles mean that the NPC is talking directly to the player.
In Figure 3.17b, on the other hand, the feedback uses a different approach, showing a
gained item with its description.

Scrollbars were avoided in the developed design. In some situations, however, they
proved necessary, being introduced with a “fade out” effect, as shown in Figure 3.17b.
“To create a better mobile experience, follow these guidelines: - Simplify everything.
Use clear, short, simple words for links, buttons, and menus” (Frederick and Lal, 2009).

130

(a) (b)

Figure 3.17.: (a) Tutorial example about navigation (and dimensions) after collecting a
item. (b) Tutorial example about navigation (and dimensions) for visualiz-
ing a gained item.

It is important to point that one of the fundamental ideas of space optimization is that
all required information should be displayed at the screen whenever possible.

“A user interface without a scrollbar is the best experience for the user. How-
ever, if the information is more than the display area, a vertical scrollbar is
acceptable. Always avoid horizontal scrollbars. These provide a bad user
experience in a small device and can be avoided using 100 percent-width.”
(idem)

Despite the effort to provide meaningful items and other visual rhetoric components
based on icons, text buttons are still necessary on the game interface. They are used
for direct questions and actions, as shown in Figures 3.17a and 3.18.

“Labels and button labels should be clearly spelled out, with meaningful de-
scriptions of the actions they will cause to be performed. Choices should be
composed of mixed-case single words. Multiple words are preferred, how-
ever, to single words lacking clarity in their intent. If multiple-word labels are
used, capitalize the first letter of each word (headline style). Use the same
size and style of font in all buttons. The regular system font is preferred.
Never change font style or size within buttons; these kinds of changes can
be very distracting to the viewer. Center each label within the button bor-
ders, leaving at least two pixels between the text and the border.” (Galitz,
2008 Pg 408)

The text-buttons should use direct texts, expressing acts that could be easily understood
by the player. Another reason to use simple and direct texts is the possibility to be
translated in future language versions.

131

Figure 3.18.: Text buttons

3.4.2.6. Navigation Design and Immediate Feedback

The use of icons and visual feedback can support the player to become aware of actions
and follow consequences. “You can improve the flow of your application by helping your
user more quickly ascertain the meaning of your controls” (Bondo, 2009 Pg 148). One
way to enhance the controlling aspect is using immediate feedback on the navigation.
This feedback can be done by image, text and symbols, as shown in Figure 3.17a and
in the following examples.

One example is when the player accesses the compass during the game in order to
find out where the next puzzle to be solved is located. Once the player clicks on the
“compass button” on bottom screen, it immediately changes its color, showing that the
function is active and displaying the compass with the needed information, as seen in
Figures 3.19a and 3.19b.

Another subtle feedback is the color of the compass at the screen. It is available in
three different colors: Green, when the user is close to the target of the puzzle (0 to 50
meters), Yellow if near (50 to 100 meters) and Red if far (above 100 meters), as shown
in Figure 3.20.

Another example of immediate feedback presented on the game interface is when
the player asks for help to the NPC during a puzzle. The icon (button) changes its color,
as seen in Figure 3.21b, and after the choice is made, a floating-window shows up,
describing the consequences of this choice and asking the user for confirmation.

Another way to give immediate feedback regarding the main menu is including label
on the buttons as soon as they are clicked by the user.

132

(a) (b)

Figure 3.19.: (a) Map during the navigation toward the next puzzle. (b) Map during the
navigation toward the next puzzle after the compass is accessed (with
proper feedback).

Figure 3.20.: The three stages of the compass, according with the distance from the
next puzzle/target.

“One common way to enhance menus is by using icons. Originally, on desk-
top systems, icons were used to visually represent an object, or function,
of the operating system (e.g. an icon to denote a document). Icons were
used in menu systems to replace, or augment, text descriptions of functions.
Pure replacement of text is rare – it’s hard to pick an icon that unambiguously
represents a function. More commonly, icons and text are used together in
menus to reinforce an idea.” (Jones and Marsden, 2006)

This concept was followed with the labels in the initial screen, where a help button
explaining the game and the used symbols is also available.

Observing the specific design developed for the StreetDroids as an academic learn-
ing process, it is evident that a careful theoretical review offered the proper support for
efficient decisions. The iconographic navigation, allied with the immediate feedback,
can be a powerful combination for usability and friendly navigation.

133

(a) (b)

Figure 3.21.: (a) Accessing the NPC during a puzzle. (b) Feedback about the chosen
action.

Figure 3.22.: Play Game button with label.

3.4.2.7. Characters

Designing for mobile games is a complicated task, mainly because of the physical limita-
tions of the small screens and the technological challenges of different mobile platforms.
One of the main goals in video game design is to entertain and engage the user. The
entertainment aspect involves several aspects of design, including game story, pacing,
challenge level, and game mechanics (Desurvire et al., 2004). However, it is also im-
portant that game designers pay special attention to the usability issues (Pinelle et al.,
2008), because a failure in the usability game interface can interfere with the experi-
ence of the user and therefore have a negative effect on the quality and success of the
game.

Our everyday life is filled with interaction that we make with characters real or ficti-
tious, and the satisfying result of these interactions relies upon in the understanding
of the character. People interact with characters in all aspects of their lives by watch-
ing a film, reading a book, playing a game, etc. Different researchers use a variety of
colorful and evocative terms to describe the relations between the users and the fig-
ure we see in the game, for example: believable agents, life-like computer characters,
synthetic characters, creatures, anthropomorphic agents, bots, NPCs, artificial intelli-
gences (AIs), and avatars (Hayes-Roth and Doyle, 1998). They can transform a simple
transaction into a memorable social experience by using their aesthetic properties and

134

their behavior with both positive and negative currents.
One of the aims in game artificial intelligence is making more believable and social

characters (Bailey and Katchabaw, 2008), in our case a NPC. One of the reasons for
having believable social characters is the inclusion of the suspension of disbelief re-
quired to immerse a player in the game. Characters promote realism and create inter-
esting game situations; they also support the game designer in the challenge of making
a convincing game experience, help in the interactivity, player choice, and replayability
(Reynolds, 2004).

In order to make the game experience more believable, the best method for design-
ing a character is by emphasizing the use of physical properties (design) and physical
behavior (Tychsen et al., 2008). This is achieved by adding personality to the charac-
ter, making a balance between general properties of each character, and keeping the
relatively generic properties, in order to avoid a negative impact of the personality on
the player. The design of the NPCs can be divided in different components: character
personality, integration, appearance, etc.

There are numerous and varying approaches to character design (Tychsen et al.,
2008), characters can be predefined, or intentionally made for the interpretation of the
player allowing the game story to be open to a variety of character personalities. Nor-
mally mobile games are defined by a cast of NPCs who act as enemies or partners,
and help players providing challenges, offering assistance and supporting the storyline
(Laird and van Lent, 2000). Also the conversational skills reflect certain capabilities that
differ qualitatively from those who use the conventional natural language (Hayes-Roth
and Doyle, 1998). In order to have a more engaging game the NPC must be a good
conversation partner because it is the character who makes the story, and not the other
way around.

In StreetDroids, the NPCs play the role of support characters, they can be merchants,
tradesmen, guards, etc. who support the storyline of the game by giving the user tasks,
hints, items or help. In this case the technology used to create these characters is
based on the reflexive behavior (Merrick and Maher, 2006). This is a pre-programmed
response rule-based to the state of the environment were only a recognized state will
produce a response and define the behavior – a reflex without reasoning.

For the integration of the StreetDroids characters in the game many components
were considered in the design, for example the location and background, and a clear
definition of their appearance by giving special attention in their representation (how
do they look), and their behavior (how do they interact in the game, their role). These
differences help the player in the identification of personality templates. But having
an interesting NPC is not enough in a game, players appear to engage more when
they can use the characters components, by manipulating them, creating their own,
personalizing the story and promoting a character-based play.

StreetDroids game support all these components with a generic NPC that can be
transformed in many others by applying few changes in the physical appearance. The
basic form for a StreetDroids character consists in a head, upper body and arms. All
of them suitable in a grid composed by a circle and a square, see Figure 3.23 In the
StreetDroids’ characters everything the player sees is changeable: hair style, hair color,

135

skin tone, eyes style, eyes color, mouths, eyebrows color, head shape, nose size, nose
color, fashion style and hand color; see Figure 3.24

Figure 3.23.: Basic form of StreetDroids characters and their parts.

In order to achieve and maintain believability, the behavioral components for the NPC
in StreetDroids are given by the vast number of graphic elements that can be use for
personalizing them; they give the user and the game many possibilities like:

• A large repertoires of different behaviors(Hayes-Roth and Doyle, 1998) to cover a
large range of situations, defined by different facial expressions.

• A normal variability in the expression in order to appear not robotic but friendly.

• Different facial expressions that can be used in different contexts giving different
interpretations to the players.

136

Figure 3.24.: Characters’ changable parts.

• Idiosyncrasies in the choice of individual characters allowing the player to distin-
guish each one from all others.

The behavioral and believability aspects are given mainly by the facial expressions,
even if they look friendly for the user and easy to talk with, the player can change
and transform the facial expression and give the NPC another context and a different
interpretation of the situation. The player has now the possibility to interact and create
a game where he can be in control of the story along with the NPC that lives in it,
enabling the creation of many other useful and enjoyable interactive environments as
seen in Figure 3.23.

3.4.2.8. Final Considerations

Planning good interface design for mobile screens is not just a matter of providing color-
ful buttons and fancy graphics. For game development, “a well-designed product based
on a team effort with a simple, user-friendly interface developed within a reasonable
time frame will be successful” (Pedersen, 2003). That was one of the guidelines used
to support the learning process during the StreetDroids’ design development. It was
not a “trial and error” process, as commonly can be observed in game development.
Each aspect was deeply analyzed based on the theoretical frameworks and translated
for each specific case.

In that context, ergonomics, and internationalization are important keys for the design
development in this project. The use of icons and symbols is one of the research areas
whose results were reflected in the solutions for the user interface. In a “visual era”, as
the world is now experimenting, GUI allied with HCI are more than just important fields
of research. They can define the success or the failure of a project. If the final product
does not hold the users’ attention, you will lose them.

To conclude the design overview, a general evaluation of the product (see the results
at section “4.2 Evaluation”) showed that the design aspects of StreetDroids received

137

a positive approval by the consulted users. This indicates that the used approach to
design development resulted in an attractive product. It is possible to believe that this is
a reflection of two main aspects of the used approach, the choices made in consonant
with theoretical foundations and the observation of a meaningful, coherent and well
implemented aesthetic language.

138

3.5. Web Platform implementation

3.5.1. Purpose of the Web Platform45

45Cristina Botta, Till Hennig

139

In contrast to the mobile-frontend, which is used for gameplay, the purpose of the
web-frontend is to enable the creation of content, view appendices of existing infor-
mation and build a community to engage users in exchange of content, information
and knowledge. These features are sourced out of the mobile client for the reason
that a desktop browser offers greater comfort and more interactivity possibilities than
a mobile-client for example mobile devices have a limited screen resolution and limita-
tions in terms of data input (in many cases no QWERTY-keyboard).

The community is the most important aspect of the web-frontend, and with it we
want to incentive people to show what they can do, learn from each other, and allow
StreetDroids to exist beyond the project. The members and their contributions are the
most important asset the game could have, since they can keep the game alive, feed
it with new content, and maybe even have new ideas on how to use game elements
in ways not predicted by the developers. They have the potential to make the game
evolve. Users can also benefit from the feedback they receive, and from the sharing of
knowledge and interests that such a community allows.

In the paragraphs bellow the main elements of the web-frontend are briefly described.
The concepts for community and collaboration can be found in section 2.2.6, “Collabo-
ration”. This section comprises a more practical explanation on the purpose and tools
available.

3.5.1.1. User Profile

The user profile, as in any other website, is used as a central for the user, where she
can add or update information about herself, like avatar, location, about. Players also
need a user profile in order to access the elements they have created for the game, the
stories and puzzles they have played, their playing statistics, and their inventory.

3.5.1.2. Inventory

The inventory is used to save the items collected throughout the game. The information
attached to the items is introduced as short texts during the game-play and this should
be sufficient to play and understand the story. The player should not be forced to read a
long text on the small display of the mobile device. Through the web-interface the player
has the possibility to see more detailed information on the collected items. Especially
interesting topics can be marked (“bookmarked”) by the player to find it again more
easily in the inventory later.

3.5.1.3. Rankings

Members of the community can see how others are doing in the game and measure
themselves against the them. There will be different possibilities to be listed in the game
rankings. Examples are:

• Who was the fastest?

140

• Who collected the most items?

• Who has played the most Story Maps?

• Who has created more (or the best) content?

3.5.1.4. Search and Sort Content

A system of tags will be implemented, so players can find what they want. Elements
can also be put in more than one category with this system. This is important, because
as the community grows the amount of elements available will be to big for the users to
look for them in a simple list. Sorting the created content is also very important on the
web interface since members should be able to edit the content to create new things
from it. Created elements should be sortable not only by tags, but also by how they
rank in the community. Some examples of how this functionality could be used are: the
most played puzzles, the most used characters, the most interesting story maps, etc.

3.5.1.5. Create Content

A major component of the game is that the user is be able to create content for the
game on his own. This will be done through what we call editors, which will only be
available via the web interface. This means that he can create the following parts of the
game:

• story maps/missions

• puzzles

• characters

• items

All created parts are re-usable by everyone. This means, the player can use existing
puzzles to build his own story map as well as building a story map from scratch. It is
also possible to only create a single puzzle or only a character, that then can be used
by others.

In the next section the implementation and technical details of a puzzle editor will be
described.

141

3.5.2. Technical Details and Structure of Editors46

46Till Hennig

142

The part of the web-frontend that empowers the user to easily and flexibly contribute
to the game’s content is what is described by the term editor. The front-end, i.e. the in-
teraction interface for the user with the editors, is implemented in HTML and Javascript,
which is generated and validated by server-side technologies. Each creatable entity
requires its own editor, with the most prominent one being the puzzle editor. In the
following, the Puzzle Editor will be introduced and discussed in regards to its function
and the level of completion of the prototypical implementation.

Technically, the Puzzle is also the central concept, as it is the entity that is refer-
enced by the most other models. It requires the most complex editor since it provides
a framework for embedding customizable forms of inputting data into a common set
of forms. This framework provides common functionality (picking a location, picking or
creating a character, etc) as well as the base for implementing customizable puzzle
editors.

3.5.2.1. Workflow from the user perspective

The puzzle editor follows the wizard pattern. A "wizard", in the context of computer
science, is described as "[...] a user interface element that presents a user with a se-
quence of dialog boxes that lead the user through a series of well-defined steps. Tasks
that are complex, infrequently performed, or unfamiliar may be easier to perform using
a wizard." (Wikipedia, 2010b) Because the process of creating a puzzle is extensive
and requires the input of complex information that is not always directly related to the
other information, it is advisable from a usability standpoint to split the form into logically
grouped units, called steps.

The user proceeds through the steps of the puzzle creation process in the following
order:

1. User selects the type of puzzle he/she wants to create

2. User inputs general information about the puzzle (such as the title, the language
of the following information)

3. User selects the location of the puzzle by placing it on a map (figure 3.25)

4. User inputs puzzle specific information

5. User selects background imagery, the non-playable character, introduction texts,
greetings and other customizable values

6. User reviews the inputted data

7. Successful puzzle submission is confirmed, user is given options to proceed

The steps are made visible in the user interface by a tab-based timeline, indicating
the current step by highlighting it, as well as the ones that have already been completed
and those that are ahead. This allows the user to gain an understanding of where in
the process he is and what is expected from him in the upcoming steps.

143

Figure 3.25.: Step of the puzzle creation process where the user chooses the puzzle’s
location.

144

3.5.2.2. Workflow from an architectural perspective

When the user accesses the puzzle editor an instance of PuzzleWizard is created. A
“wizard” as a noted before, describes a user interface approach. It is also an infrastruc-
tural construct, that "glues" multiple steps of input data together. It allows the integration
of customizable elements at different stages of the puzzle creation process. These so
called "plugins" implement functionality, by overwriting the default implementation, for
which the wizard offers interfaces. While the interfaces need to be well-defined on
one side, to guarantee a seamless integration into the wizard, they need to be flexible
enough to be able to accommodate a wide array of use-cases and easy implementation.

3.5.2.3. Workflow from an implementation perspective

The puzzle editor is assigned the URI /editor/puzzle/ in the urls module which
is mapped to the view core.views.puzzle_editor: This function renders a tem-
plate which prompts the user to select a puzzle type.

After a valid selection has been made, an instance of EditorWizard is created.
EditorWizard is a subclass of django.contrib.formtools.wizard.FormWiz
ard (Django) an abstract class which is supplied by the framework. It validates and
passes on the already collected information and has anti-tampering measures built-in
to prevent malicious code from being executed.

An EditorWizard requires a list of individual Form instances (subclasses of djan
go.forms.Form), which are groups of input values, and the implementation of the
done method, which defines the code that is executed once all steps have been com-
pleted. This method creates a XML document of all information and sends it as an
HTTP POST request to the webservice.

The list of Form instances and the done method are means for customizing the a
puzzle editor - these two attributes depend on the puzzle type that has been selected.

The forms
The list of forms consists of forms, which are common to all puzzle types and those

that are specific to the selected puzzle type. The common forms are implemented in
core.editor, the custom forms need to be placed in the editor module of the puz-
zle application and included in the attribute EDITOR_FORMS; this attribute is imported
and injected into the list of common forms at runtime.

The order and name of the instantiated Form classes as processed by the EditorWiz
ard is as follows:

1. MetaForm - collects general information about the puzzle (name, language, etc)

2. LocationForm - collects information about the location of the puzzle

3. Forms imported from puzzle application

4. StoryForm - collects information about the puzzle which will be embedded into
the storyline of the mission (NPC, item, feedback texts, etc)

145

Each Form class defines the Fields that are required to be filled in by the user. This
definition includes options for data validation, type-checking, help texts, etc.

In addition, each Form can overwrite the default template used for rendering by sup-
plying a HTML template with the name of the form in the /templates/editor/ di-
rectory of the puzzle application. This allows each Form to fully customize its appear-
ance to include customized UI elements. This has been taken advantage of in the case
of LocationForm, where a map has been embedded for easy selection of coordi-
nates. While the appearance does not have any resemblance to the default form the
server-side implementation is the same.

The done()-method
The done method serializes the user’s input data into the StreetDroids XML format.

It is called after all forms have passed validation.
The EditorWizard can only serialize the common parts, i.e. the data from MetaForm,

LocationForm and StoryForm and not the data from the forms which have been
injected by the puzzle. For this reason the function create_xml_from_input is im-
ported from the editor module of the puzzle application.

The done method renders the template master_create.xml from the xml tem-
plate directory. That template contains a placeholder tag, called puzzle_data. Inside
this tag the contents returned from create_xml_from_input will be placed.

As suggested by the name, the function is expected to generate an XML fragment;
by convention it does so, although not required, by rendering create.xml from the
templates/xml directory of the puzzle application. The only requirement is, that
the XML is well-formed, the layout is adaptable to the structure needed to model the
puzzle’s specific data.

3.5.2.4. Diagram

For a more technical documentation of the internals, please refer to the inline code
documentation and/or the technical documentation in the appendix.

3.5.2.5. Outlook

At the current state it is possible to create puzzles with the editor. Functionality which
is not available, but required for a real world deployment, is the possibility to edit puzzle
information. This is true for the puzzle creation process (users cannot go back from
the review screen to a specific step to change information) as well as changing an
already created puzzle. Editing information means loading it first, changing it, and then
saving the changes. For simple data types (such as strings) editing options could be
easily implemented. More problematic to implement would be editing of complex puzzle
data (draggable A should not by placed at (x:5/y:3) but at (x:3/y:5)) because that would
require loading the existing data into the editor and recreating the user interface so the
user can edit it.

146

Figure 3.26.: this figure needs a caption and a reference in the text

147

While the feasibility for said functionality is definitely given, the development would
require extensive conceptual effort to consistently enable loading and editing of complex
data as well as the manpower to actually realize the functionality for the existing puzzle
types.

148

3.6. Issues and Solutions

3.6.1. Downloading Time Issues47

47Yarik Sheptykin

149

3.6.1.1. Problem statement

The Streetdroids project software development consists of two phases: the game pro-
totype development and the final game implementation. The game prototype was de-
signed and build to prove the game implementability in the chosen environment and
check if there are any weaknesses in the game concept or in the software architecture.
One problem found during the prototype testing was the long pause in the game play
between reaching the location and the puzzle launch. The root of the problem was in
the puzzle’s content downloading. According to the software concept the content for a
puzzle should be retrieved from the game server right before the puzzle starts. Testing
in the emulator showed quite a good speed of the network transmission rate but the live
testing proved the opposite. The testing happened in the real environment, thus the
system was influenced by many conditions, one of them being the weather. Under dif-
ferent circumstances the GPRS data exchange speed used to slow down significantly,
therefore the puzzle’s launch delay increased times up. This was a noticeable drawback
in the implementation concept.

3.6.1.2. Investigation

An investigation of the problem was started by analizing the data being transmitted. An
average puzzle content package has the approximate size of 1 megabyte. The average
GPRS data rate shown by the emulator is around 100 kilobit per second (GPRS pro-
vides data rates between 56-114 kbit/s). With such a data rate 1 megabyte (8 megabit)
of data needs around 70 seconds to be completely downloaded. Nevertheless, as men-
tioned above, in the real play environment the GPRS data rates might drop lower and
consequently delay the puzzle launch. Tests proved that content downloading might
last up to 140 seconds which means that data is transferred with the lowest rate. There
might be a number of reasons for this phenomenon, ranging from an access point over-
load to the player’s location peculiarities.

3.6.1.3. Solution

There were two suggested ways for solving this problem. First, the puzzle content size
could be reviewed and compressed in size. There are many parts in the game where
such an optimization would be possible. For example, in one of the drag-and-drop
puzzles all the image resources are stored in an uncompressed PNG format. Though
there are places where PNG images are required because of their transparency support
(Boutell, 2003), in this particular example it is not needed, and therefore images could
be converted to JPG, which needs less size. Though this approach is very helpful for
the given example it might not be suitable for other content types, therefore another
solution was proposed. It was suggested to shift the puzzle’s downloading process to
the system background, and execute it while a player is looking for the puzzle location.
Under the normal game flow it is expected that more than 2 minutes are needed to
get from one puzzle location to another. This time slot could be successfully used to

150

download the content for the next puzzle. Between these two solutions the second
was prefered and implemented in the final game client. Evaluation of this downloading
strategy proved, as expected, to speed up the puzzle launch.

To all the benefits of the second approach some drawbacks have also to be added.
The same problem might arise again if the puzzle locations are placed too close to
each other. If the player reaches the place faster then the puzzle content is downloaded
the puzzle launch will be delayed. Another drawback appears from putting a download
process in the system’s background, which is done by threading the application process.
Since the child threads have a lower priority compared to the main thread they get less
processing time and therefore are executed slower. Despite the given disadvantages
none of them has much impact in the system under normal game play circumstances,
which is often the case.

151

3.6.2. Memory Leaks48

48Vahe Markarian

152

Upon integration of an increasing number of components to the game problems, like
frequent game crashes, started occuring. In-depth debugging measures were taken
in order to determine what caused the application to crash. At first, debugging by
toggling breakpoints everywhere in the code was tried, but it proved to be unsuccessful
in the detection of the problems. Later, a tool that comes with the Android SDK, DDMS
(Dalvik Debug Monitor Server)49, was used to debug thoroughly. DDMS monitors for
threads and heap updates in an application. While observing changes in heap size, a
huge increase in heap size was noticed when opening the navigation activity to show
Google Maps on the screen. The growth of heap size is normal since navigation activity
requires memory to be able to download map data. Clearly, navigation wasn’t the main
reason for the application to crash, because navigation activity relies mostly on the
Google Maps library, which is quite stable in other systems. Therefore, the problem was
using a lot of resources in the game besides having navigation activity accumulating
even more resources. Afterwards several successful attempts in spotting and fixing
some components helped increasing the system’s stability. For example, the use of a
compass in the navigation activity was dramatically increasing the heap size. In order to
rotate the compass the device’s accelerometer was sensing the rotation angle relative
to North several times per millisecond. While rotating, the compass was being re-drawn
on the screen with a different rotation angle. The compass had three different states,
and each state had a different color. In addition the three different compass colored
images were being used by the compass as many times as the sensor was checking
for rotation updates. As a result, the compass was using extra image resources in vain.
The problem was fixed by setting the compass to use only one of the three images at a
time.

Despite several successful attempts to make the system more stable, there were
times where the application did crash again. Researching for a possible solution led to
many hypothesis on the several issues that could be the reason. First of all, inadequate
layout structuring and improperly handling UI view references could trigger such issues.
Subsequently, bad resource management throughout the application would result in
such problems as well. Either way, it would take a restructuring of the entire application
to resolve this issue, which is likely not the best solution because of time constraints.

49http://developer.android.com/guide/developing/tools/ddms.html

153

4. Results

4.1. Prototypes

4.1.1. First Prototype (Paper Prototype)1

1Catalina Payán

154

Paper prototyping is a usability testing method useful for any human-computer inter-
face. It is a mockup (Spool et al., 1998), that helps to clarify requirements and enables
screen and draft interaction designs in order to simulate and test them. Paper proto-
typing can be considered a method of brainstorming, designing, creating, testing, and
communicating user interfaces. It is a tool for every academic researcher or usability
specialist. This method does not depend on a platform and can be use for Websites,
Web applications, software, handheld devices, etc. (Snyder, 2003).

Paper prototyping is also a method used by many game developers. Giles Schildt,
director of the game development at Austin-based Steve Jackson Games, argue that
changes are a necessary part of game design, and as earlier as we can made the
changes, the easier and cheaper it will be. “A paper prototype costs ’effectively nothing’,
and if it’s done before specialized art or programming it can shave off the final cost of the
project.” (Henderson, 2006). According to Carolyn Snyder’s article on paper prototyping
in the IBM site (Snyder, 2001), paper prototyping is especially useful for gathering data
about problems that can be presented when you are developing the software, in this
case the game. She described some considerations to take in count when you are in
the developing stage.

• Concepts and terminology: How to make the target understand and feel familiar
with the game.

• Navigation/workflow: How is the sequence of the game, in other words the ap-
plication of the game mechanics, how the user will know where to go and will not
feel lost in the game.

• Content: What information is going to be use in the game, if it is concrete, useful
and reaches the objectives of the game.

• Page layout: Even if it is earlier to test the final design it is important to know if
the users can find the information they need.

• Functionality: How functional is the game, and if the flow chart is easy to repre-
sent in the game sequence without complicating the user abilities.

4.1.1.1. StreetDroids paper prototype

For the StreetDroids game development, the paper prototyping method was used ac-
cording to the user expectations and needs; by explaining in detail the screenshots,
menus, dialog boxes, interactions, etc. that suited better the performing of the tasks al-
ready discussed in the mechanics of the game. The team explored different metaphors
and design strategies, and decided the initial design of each individual screen by test-
ing the architecture of the game. The paper prototype was used to improve different
areas of the game, for example: team communication, implementation, and explana-
tion of the game. Moreover the paper prototype developed a brainstorming were the
team collected and visualized ideas for the game mechanics and the appearance of

155

the interface, by testing the legibility of the design and identifying the main navigation,
clickable elements, etc. see Figure 4.1

Figure 4.1.: Storyboard of the puzzle activity structure.

After the creation of the paper prototype a usability test was conducted in order to
simulate the behavior of the interface, as a result the group had its first approach to the
game play and could unify the different ideas about the concept and the mechanics of
the game. A paper usability-testing works similar to any other usability-testing session.
The test started with a team member playing the role of the mobile phone, manipulating
the pieces of paper and simulating how the interface would behave. The other part of
the team were the testers or the expected audience, they had to perform realistic tasks
by interacting directly with the prototype, “clicking” by touching the prototype buttons or
solving the tasks.

In the usability test some ideas form Giles Schildt (Henderson, 2006)were taken into
considerations in order to improve the results of the paper prototype:

• Taking notes about what happens. Which are the most common problems?

• Don’t get emotionally attached to the mechanics, because they can change de-
pending on the user’s response.

156

• Don’t be afraid to make changes.

• Don’t argue with the testers.

• Listen for “first-person” comments such as “I think” or “I like,” and pay special
attention to those who say “I’m confused”.

The usability test with the paper prototype gave positive results, the team discussed
about the problems solutions, marked on the prototype were a user attempted to interact
with the interface or were the interaction was not clear, asked the users about their game
expectations and saw the reactions to the game challenges. It helped to improve not
only the mechanics of the game but also the use of the content in the game like the
information the user should have in order to accomplish the task. On the other hand, it
gave quick feedback of the game and detected the usability issues early in the design
process before the investment of a lot of development effort, see Figure 4.2

Figure 4.2.: Paper prototype.

To make the experience of working with a paper prototype as useful as possible, it is
ideal to have a technical view. Paper prototypes do not demonstrate the technical ca-
pabilities, so it is important to have a person who understands the technical constraints.
It is also a good idea to have a graphic designer because he may find problems that
could influence the visual aspects of the design.

157

4.1.2. Final Prototypes and Their Application2

See demo videos by Sven Hamann and Nils Thies.

4.2. Evaluation3

2Sven Hamann, Nils Thies
3Dema El-Masri, Isabella Lomanto, Nils Thies, Jana Wedekind

158

4.2.1. Objectives

4.2.1.1. What do we want to achieve with the evaluation

When designing software applications, the goals are mainly to have an interface which
is easy to learn, use and master (Desurvire et al., 2004). Whilst, the goal of game
design goes beyond that, requiring it to be playable, enjoyable and not just having a
usable interface. The main reason for that is that games evaluation assesses additional
properties of the gaming experience such as the game mechanics and the story. The
game market being the competitive market it now is, has required game designers and
industries to invest a lot of time in finding new ways to design and evaluate games (Lee
and Im, 2009).

The increase of this market’s size, the advances in technology, and the diverse game-
platforms require re-establishment of terms as evaluation, and associating it with new
terms as playability, satisfaction, and enjoyment, rather than merely usability. There
are many heuristics that have been applied to games in general and to mobile games
specifically, yet there remains a need to integrate these heuristics in to a model which
fits to StreetDroids context and platform. Also because, the traditional usability heuris-
tics cannot be directly applied to games (Korhonen and Koivisto, 2006). Game design-
ers create games to be challenging, therefore, the player does not know what to expect,
and works towards goals defined by the game designers (Sharples, 2009), and eval-
uation tries to find out how efficiently users have achieved these goals (Sweetser and
Wyeth, 2005). For this reason more aspects than usability have to be applied to game
evaluation. Not to mention to mobile games such as the one at hand StreetDroids.

The evaluation started with the development of heuristics fitting the game, platform
and technology at hand. These heuristics were adopted from a number of previously
done projects and researches, and are thoroughly handled in the methodology section
of the evaluation. The aspects of the game to be evaluated were the game play, us-
ability, and game mechanics. Mobile device features were also an important part of
the evaluation, as it is the goal of game designers to have players focus on the game
and enjoy their time rather than struggle with a control or with the technology. Aside
from focusing on the game play and enjoyment, a more challenging aspect was to be
evaluated, namely how well the concept fits into the mobile context. Designing games
in general is a challenge, and designing them to fit into small screens and numerous
interaction techniques for mobile phones poses only a bigger challenge.

How much the mobile context affects the tasks that the user performs was evaluated,
if it made things easier or more difficult, for reasons associated with the device or the
game. StreetDroids, being a location-aware game played outdoors, also required to in-
clude in the evaluation the question of how enjoyable an outdoor scenario is for players;
for the current content that scenario is the Old City of Bremen.

A main goal of the evaluation was to verify whether the game mechanics allow players
to engage in a fun exploration of an environment, through which they could acquire
some knowledge. In the current content at hand these learning aspects have been
applied to the Old City of Bremen. This raised other questions as to whether players

159

were able to learn about the history of Bremen by exploring the urban environment of
the city. More specific questions in mind were focused upon in the evaluation as well,
such as: how easy the technology was?, were the instructions of the game clear or
not?, was the game enjoyable and attractive or not?

StreetDroids has a mobile and web end, the mobile end was tested repeatedly by the
project group and later on evaluated by a group of international students successfully
using qualitative and quantitative methods. The web end on the other hand, was only
tested by the project group themselves. Nevertheless these tests did focus, as on the
evaluation, on applying heuristics as usability, debugging it, developing the navigation
in it, and constantly improving the user interface´s (UI) design and functionality.

To allow for all these aspects to be covered in the evaluation at hand, a methodology
was developed containing heuristics covering the different criteria falling underneath
usability, explorability, playability and satisfaction in games. Usability remains a base
aspect to base an evaluation on, focusing on the UI for example. Whereas explorability
is an aspect related to the fact that the game is a location-aware game, and exploring
and learning from the surrounding environment is a main goal of it. Playability and
satisfaction are closely related to games evaluation in general, as the goal of games is
for the players to enjoy themselves and have fun.

4.2.1.2. What can be tested

The mobile end of the game has gone through many testing sessions by the project
group, since a paper prototype of it was made in the early stages of the project. In
those early stages, the team worked basically on further-tuning the game mechanics
and navigation of the system to make it consistent. A rough design was made for the
interface and was later on adopted for the design stage for Non-Playable Characters
(NPC’s) and the general navigational UI.

A prototype was created for StreetDroids by the end of the project´s first semester. It
was basically a number of quizzes which would be activated upon reaching a specific
location on the map. The development of this prototype, as well as in the case of any
other prototype, helped point out problems and solve them in earlier stages rather than
having to deal with them in more advanced stages of the game development. Yet these
problems found in the prototype, and working on solving them, posed many difficulties
to reach the project´s goals on time, and therefore some features were dropped.

Another prototype was developed, consisting of one mission with two puzzles. This
was the prototype used in the evaluation process, even though initial aims were at
having the subjects play several missions in one story, this was not realized. At that
time the web end was being developed as were the puzzle, character, and mission
editor. These features were not evaluated because they were not complete.

4.2.1.3. Methodology

To conduct the evaluation a one-time afternoon session with six subjects was orga-
nized. The subjects were between 22 and 29 years old, which is older than the defined

160

target group for the test scenario, but for the whole concept also other age ranges are
interesting. It was planned to make another evaluation with an improved prototype and
preferably with a school class in the desired age range for the history map of Bremen.
However, given the lack of time and human resources in the project, it was not rea-
sonable to do another evaluation. Due to the fact that English-speaking subjects were
needed, the group proved to be very international, consisting of the following national-
ities: American, Colombian, Italian, Polish, and Russian. The group was composed of
three female and three male subjects. One subject left during the play-testing because
of personal reasons.

The methodology consists of three different parts, which include a questionnaire,
play-testing, and a focus group discussion. The two latter were video-taped in order
to be able to later analyze the activities in depth. During the analysis the observation
notes were considered as well. It was planned to additionally use some logging on the
mobile devices, that could give information about problems that occurred while playing.
Unfortunately, it was very difficult to connect the information of the log to what was
actually happening in the video, as there has been no logging of the current location of
the player.

Before starting to play, the subjects were posed some general questions about their
usage of mobile games and their interest in location-aware games. After they had
finished the game some more questions were asked to get immediate feedback if the
subjects liked the game and could imagine to play it or a similar game again. The results
of the questionnaire are documented in 4.2.3.1. Apart from that, the given answers
were considered in the analysis in relation to the defined criteria, whose results are
noted down in 4.2.3 Results.

After answering the questionnaire the subjects began to play with the prototype. They
had an hour to explore the city center of Bremen. The subjects started not too far
away from the actual puzzle locations, which they did not know. The players were told
basic information about the game, but they were not told how for instance a puzzle
would work. This was done on purpose to investigate critical issues of the usability
and the game mechanics. The video of the play-testing was conducted in regard to
identify breakthroughs and breakdowns, following the methodology suggested by Mike
Sharples. “Breakthroughs are observable critical incidents which appear to be initiating
productive new forms of learning or important conceptual change. Breakdowns are
observable critical incidents where a learner is struggling with the technology, is asking
for help, or appears to be labouring under a clear misunderstanding.” (Sharples, 2009)
In our case these breakthroughs and breakdowns were applied both to learning and to
the game experience, in other words to the fulfillment of the goals and objectives of the
game. The incidents can either be used to describe unexpected reactions of the user
or the system, as well as to verify anticipated behavior. Thus, using this methodology
allowed us to identify critical incidents that needed further analysis. “A critical incident is
an event observed within task performance that is a significant indicator of some factor
defining the objective of the study.” (Pan et al., 2004). It was planned to relate these
information to a log that was created on the mobile devices, but as mentioned earlier
it was difficult to find out which information relates to a certain incident documented in

161

the video.
As a final step the players participated in a focus group discussion. To get the focus

group started and in order to get an understanding of the emotional reactions of the
subjects towards the game, the so called Product Reaction Cards4 (Benedek and Miner,
2002a,b) were applied. It was decided to film the session, as the video helps recalling
the statements of the subjects. During the discussion it was possible to talk about
certain situations that were observed throughout the play-testing, as well as to address
parts of the game that only exist as a concept yet, as for example the collaboration
aspects. With the help of the video, a short summary of the questions and statements
was written down in a transcript. This was the basis for the analysis of the focus group
according to the below in 4.2.2 defined criteria. The results were also compared with
the answers from the questionnaire and the notes of the observers. As guidelines for
the analysis the methodology suggested by (Krueger and Casey, 2000) and (Rabiee,
2004) was used.

4.2.2. Criteria

4.2.2.1. Usability

Most probably the best known of aspects when it comes to evaluation. In traditional
software products, usability could be defined as the effectiveness, efficiency, and user
satisfaction in a specified context of use (Wiberg et al., 2009). Games however, are
most enjoyable and fun when they provide sufficient challenge for a player, also a feeling
of engagement. The challenge can be, for instance, in learning the game, solving
problems or discovering new things. (Sharples, 2009) The applicability of traditional
usability heuristics on games can be questioned by game designers (Liljedal, 2002),
due to the fact that usability focuses mainly on the interface and disregards game play.
Usability in games goes further than the user interface to include elements as game
play, and game mechanics. In the case of StreetDroids, in addition to it being a game
played on a mobile device, it is also location aware. Requiring the user to interact with
the surrounding environment, and maintaining coordination at all times, another aspect
in which the game at hand differs from a traditional one and requires a wider variety of
usability concerns (Pinelle et al., 2009).

Pinelle et al. (2009) in (Liljedal, 2002) published game usability heuristics that are
based on game reviews and they have been validated in a preliminary study. These
heuristics are used to evaluate game usability (user interface) and there are no heuris-
tics concerning game play issues (Liljedal, 2002).

Game researchers started to develop heuristics which would include both usability
and game play issues, to assist game developers in discovering playability problems in
the game design (Liljedal, 2002). Clanton in Kurosu in: (Lee and Im, 2009) for example
offers a way to encapsulate the different usability issues of games into three areas:
game interface, game mechanics and game play. The interface is the device through

4Developed by and © 2002 Microsoft Corporation. All rights reserved.

162

which the player interacts with the game. That being a mouse or a keyboard or so.
It also includes the software controls that players use to set up their games, move
through the game, save and exit the game. Game mechanics on the other hand are
the physics of the game, being a combination of animation and programming. They are
used to describe how players interact with rules like how the player is supposed to move
throughout the game, strategies, and game states. Game play is the process by which
the player reaches the goal of the game. The previous three aspects developed by
Clanton relate to the game being both functional and satisfying and require both design
and evaluation Kurosu in: (Lee and Im, 2009). Thus, assessing the usability of games
taking into consideration the user interface, game play and additional aspects that are
associated with games when speaking of their usability as game mechanics.

As explained above, combining usability and game play for mobile games would re-
quire additional aspects other than the traditional usability ones focusing only on the
user interface, this was also applied in StreetDroids. That meant combining the user
interface, game play, game mechanics, and the device’s usability, all up to some point.
Another reason for that is that other criteria than usability were defined in the evalu-
ation and measured. In games in general, a thin line divides criteria as usability and
playability, yet it was best for the evaluation to break down the criteria, allowing for more
specific analysis and definition of aspects under each of the criteria to be measured.
Therefore usability in the case at hand remained a specific area with the aspects of
readability, interaction, feedback and help falling underneath it. The other criteria of
evaluation (playability, explorability, and satisfaction) take on more aspects regarding
the enjoyment and satisfaction the player experienced while playing the game and will
be discussed in the following parts.

When developing the usability criteria, the main aspects kept in mind were the user
interface and the controls of the game; those controls being the physical ones that the
device provides the user with or the game controls through which the user navigates in
the game (e.g. exiting, saving, etc, also the game’s feedback system, the help system
and the readability).

Some of these aspects as the feedback and help system can be applied to games in
general, being a mobile or computer-based game. Assessing the game’s mechanics by
evaluating the way in which it provides the user with immediate and precise feedback or
help. That can be related to the game’s controls; the game giving the player feedback
when pressing on a specific button in the game or on the device which triggers a specific
reaction from the system. The precision and relativeness of this feedback to the user is
amongst the aspects to be measured and evaluated. The help system, quite similar to
the feedback system, an aspect to be measured by evaluating the precision of the help
provided by the system to the player once he requests it.

More specific aspects closely related to the mobile game evaluation are the other
two criteria of usability, namely: interaction and readability. Interaction, in particular
dealing with the special interaction techniques the android device offers the player:
mainly the touch screen. Readability, taking on a criteria for itself under usability, is also
closely related to the mobile device. The device’s 3.5 inch display screen presents a
challenge for designers to fir their concept, design, and text into this mobile context.

163

Another challenge regarding the readability is the accelerometer the device provides,
this feature allows the phone to switch display modes between portrait and landscape
when the user simply rotates the device 90 degrees. In doing so, the text and graphics
also have to switch modes posing yet an additional challenge on the designers to make
the game functional and appealing in whichever mode it is used in, and changeable
instantly.

4.2.2.2. Playability

There is not much consensus on a definition for playability, however one can identify two
distinctive approaches for understanding it. On one hand it is understood as an instan-
tiation of usability for games (Fabricatore et al., 2002), (Desurvire and Wiberg, 2009),
and on the other hand as the quality of gameplay and player experience (Järvinen et al.,
2002), (González Sánchez et al., 2009), (Sweetser and Wyeth, 2005). Although playa-
bility is closely related to usability, it should go much further as “Experiencing gameplay
does not equal experiencing regular product use” (Nacke, 2009). This means that us-
ability alone is not enough to evaluate and design the player experience. A much exten-
sive model and specific heuristics are needed. A model that takes in consideration the
player enjoyment and concentration, the types of challenges, the manner of storytelling
and the degree of emotion when players play video games.

For the purpose of the evaluation of StreetDroids we defined playability as set of
methods and criteria for designing and evaluating a product’s quality of gameplay or
interaction (Järvinen et al., 2002), (González Sánchez et al., 2009). Concretely we
followed the approach to playability proposed by Järvinen et al., which focuses on the
gameflow. For that reason we took the model for evaluating games developed by game
researchers Penelope Sweetser and Peta Wyeth as the base for our playability evalu-
ation. For this model, the researchers used the concept of flow by Mihaly Csikszent-
mihalyi as the foundation to organize and synthesize different game heuristics into a
concise model that focuses on player enjoyment in games(Sweetser and Wyeth, 2005).

The concept of flow as explained by Csikszentmihalyi does not refer to the common
conception of flow used in game development, which relates flows to a certain fluency
that allows for player satisfaction. Csikszentmihalyi’s flow theory is based on the idea
that elements of enjoyment are universal, no matter from what activity enjoyment is
derived from. The flow experience is described as a state of mind in which a person
is freely and effortless giving full attention to a particular activity in order to achieve a
goal. Sweetser and Wyeth explain that “the key element in flow is that it is an end in
itself – the activity must be intrinsically rewarding and autotelic” (Sweetser and Wyeth,
2005). For them this is specially true when applied to games, because for a player the
main reason to engage in the activity is the experience it will produce. Sweetser and
Wyeth add to their arguments for applying Csikszentmihalyi’s theory to games, that flow
activities produce a feeling of being in a different or new reality, which they affirm is a
familiar sensation for gamers. The result of Sweetser and Wyeth study is the GameFlow
model consisting of eight core elements, see Table 4.1 (Sweetser and Wyeth, 2005).

The GameFlow model offered us the basis to structure our playability model and

164

Elements Description
Concentration games should require concentration and the player should

be able to concentrate on the game.
Challenge games should be sufficiently challenging and match the

player’s skill level.
Player skills games must support player skill development and mastery.
Control players should feel a sense of control over their actions in

the game.
Clear goals games should provide the player with clear goals at

appropriate times.
Feedback players must receive appropriate feedback at appropriate

times.
Immersion players should experience deep but effortless involvement

in the game.
Social interaction games should support and create opportunities for social

interaction.

Table 4.1.: GameFlow Elements and Description

criteria. However, some adjustments were needed in order to have a model that would
fit the characteristics of our game. In particular we wanted to give special attention to the
player’s concentration and involvement in the game and the player´s ability to learn and
master the game. For this reason we took into account the playability model proposed
by González Sánchez et al. and introduced in our model the element of learnability,
which included the two elements challenge and player skills from the GameFlow model.
That helped us to focus on this matter more deeply during the evaluation despite the
limited time and resources. Another change we made to the GameFlow model was to
leave out the feedback element. We made this decision because this topic was covered
with the usability criteria we explained before. This changes produced a model with six
main elements and ten main criteria, see Table 4.2.

Our adaptation to the GameFlow model was applied in our evaluation paying special
attention to the play-test observations and the results of the focus group. In detail the
main elements and criteria of our model were described as follows:

Concentration:
We define it as the player’s ability to concentrate and maintain the focus on the

game. The game should call the player’s attention and motivate her to stay on the
game and master it. We identified two main criteria for evaluating concentration: Attrac-
tiveness: which refers to the game capacity to provide meaningful and pleasant stimuli
to the player. Appropriate workload : this means that the player should not be burdened
with too many tasks or swamped with stimuli. Task and stimuli should be balanced so

165

Element Criteria
Concentration - attractiveness

- appropriate workload
Learnability - skills

- challenge
Control - meaningful interaction
Clear goals - clarity

- consistency
Immersion - emotional involvement
Social interaction - group awareness

- communication

Table 4.2.: Playability model for StreetDroids, main elements and criteria

that the player can concentrate without feeling overloaded.

Learnability:
We take González Sánchez et al. definition of learnability as “the player’s capac-

ity to understand and master the game’s system and mechanics” (González Sánchez
et al., 2009). The game should offer the player the possibility to learn the game rules
and objectives as well as its ways of interaction. For this element we take into account
two criteria: Skills: which means that through this learning process the player should
acquire the necessary skills to master the game. Challenge: which refers to the appro-
priate balance between the game’s difficulty and the player’s skills.

Control:
We understand control as the player’s ability to sense that her actions or choices

influence the game. The game mechanics as well as the interface, should support the
player and allow her to achieve this sense of control. We identify meaningful interaction
as the main criteria to evaluate control. Meaningful interaction: refers to the quality of
choices that the player can make and how she perceives that these decisions affect
and influence the game. For this type of interaction adequate feedback and a sense of
control of the game interface is needed, as well as coherent game mechanics that allow
for emergent behavior.

Clear goals:
We take Sweetser and Wyeth definition of clear goals and understand it as the

game capacity to provide goals that are coherent, consistent and understandable to the
player. These clear goals should also be given at appropriate times. For this reason we
use clarity and consistency as the main criteria to evaluate this element. Clarity : refers
to the manner in which the goals are presented and their coherence. Consistency :
means that clear goals should correspond to the appropriate moment in the game.

166

Immersion:
We follow Sweetser and Wyeth definition of immersion as the player’s capacity to

get effortlessly and directly involved in the game. The game should create a believable
environment that allows the player to get emotionally involved in the game. Our main
criteria for evaluating immersion is: Emotional involvement : which refers to the player’s
ability to become less aware of her reality outside the game and become deeply in-
volved in the game’s reality. Since the game world in StreetDroids overlaps with the
real world, we relate immersion to the game’s ability to offer a mixed reality experience
where the player can establish an emotional connection with the real world.

Social Interaction:
We define it as the player’s ability to communicate and interact with other players

inside and outside the game. The game should support communication and interaction
between players whether they play together in a collaborative fashion or competitive
one. Even if players play individually, the game should also offer the possibility for social
interaction and group awareness. We identify two main criteria for this element: Group
awareness: which means that the game should support player-to-player interactions
that allow players to feel that they are part of a group or community. These interactions
can be part of the game as competition or collaboration, or can be outside the game as
social or online communities. Communication: refers to the game capacity to provide
different channels of player-to-player communication (e.g. face-to-face communication,
chats, online communities).

4.2.2.3. Satisfaction

Satisfaction poses the question if the player enjoyed the game, therefore the player’s
emotions while playing or during later interviews is observed (Sharples, 2009). The
game should allow players to have a fun experience that provokes positive emotions in
the player. González Sánchez et. al divide satisfaction further into fun, disappointment
and attractiveness (González Sánchez et al., 2009). Their definition of the three terms is
as follows: “Fun: the main objective of a video game is to entertain, hence a video game
that is no fun to play could never satisfy players. Disappointment: we should ensure
that players do not feel so disappointment or uneasy when playing a video game that
they abandon it altogether. Attractiveness: this refers to attributes of the video game
that increase the pleasure and satisfaction of the player.” Hence it can be inferred that
the main objective of evaluating satisfaction is to detect if the game is fun. Second is to
find out if an enjoyable experience is created that the player is interested in keeping on
playing.

For the evaluation we were especially interested in finding out if the players enjoyed...
...the whole game concept.
...the outdoor scenario.
...the exploration of the city with a mobile device.

167

One way to assess satisfaction, is the use of the mentioned Product Reaction Cards.
They are designed by Microsoft and are described in detail in the paper (Benedek and
Miner, 2002a). These cards regularly include 118 cards with adjectives such as confus-
ing, personal, and frustrating. For our purposes we narrowed it down to 60 adjectives,
with which reactions towards the technology or the game experience were observed.
Further, during the focus group questions about satisfaction were posed to the sub-
jects, in order to get a better understanding of what they liked about the game and what
they felt frustrated about. An example strongly related to the player’s emotion was the
question about anyone being scared because of playing next to the tram tracks.

4.2.2.4. Explorability

Explorability is a novel approach in mobile learning, stating that the players will learn
about and with the help of their surroundings. To achieve explorability games should
offer sufficient possibilities for spatial exploration in a meaningful way. This means a
game should enable the player to actively engage with his environment by exploring the
game world. The player should be motivated to make a connection between the real
world and his knowledge gained within the game world. Similarly, Sharples (Sharples,
2009) describes that while measuring effectiveness, one must take into account the
context in which the learning occurs and the intended aims of the activity.

We propose, that the interaction with the environment as well as with other players
can create an immersive experience for players, which can motivate and enhance learn-
ing processes. Further, explorability can be defined as the ability of a game to support a
more complex and meaningful exploration, which allows the player to relate emotionally
with the environment. Explorability as evaluation criteria for pervasive, mixed reality or
location-aware games should measure or indicate the extent to which a game enables
the player to experience the game environment as both space and place.

Concerning the explorability the questions below were the main ones to answer with
the help of the evaluation:

• Is an interaction with the environment happening?

• Did the game support a new way to explore the city?

• Was factual knowledge about the visited places remembered?

4.2.3. Results

4.2.3.1. The questionnaire

The questionnaire was used to get a general impression of the subjects and their view
on mobile games. The questionnaire included several closed questions, which partly
were answered before playing the game (Questions 1-8), and partly afterwards (Ques-
tions 9-15).

168

1. Do you play games on your mobile phone?
Answers: 2x yes, 4x no

2. What kind of mobile games do you usually like to play?
Sudoku, Arcade, Guide, Puzzle 2x, Word, Action

3. Do you like to go outside for playing a mobile game?
1x yes, 4x no, 1x maybe

4. Have you ever played a game like ours before?
1x yes, 5x no

5. If you did, which one did you play?
1x: Maybe? I wrote a mobile audio-online game

6. Did you use another mobile learning game before?
6x no

7. If so, which one?
No answers, as no one played another mobile learning game before.

8. Are you interested in creating your own games/ content for a mobile game that
you could play outside?
2x yes, 4x no

9. Would you play such a location-aware game again in the future?
4x yes, 2x no

10. Were the rules of the game clear to you?
2x yes, 4x no

11. Did you experience any difficulties playing the game?
5x yes

12. Can you describe in a few words what caused the problems?
Subject 1: Sometimes I was staying in the target place, but it was saying I hadn’t
reached it or sometimes the GPS was slow.
Subject 2: The puzzles were not appearing where I reached the right places.
Subject 3: Bad GPS signal, slow internet puzzle download
Subject 4: GPS/Tracking difficulties, unclear puzzle rules
Subject 5: Clicking? Accuracy of the GPS module, finding locations by using map
module

13. Did you learn something about Bremen?
5x yes

14. If you did learn something, can you give us some examples?
Subject 1: About Rathaus like a place to manage something in the city and the

169

representation up the globe.
Subject 2: The Roland has different symbols which represent something like the
ring
Subject 3: The Rathaus building and the Roland statue
Subject 4: Story behind founding, history of flag
Subject 5: I can remember some facts about the sailors coming to Bremen in
medieval times.

15. Did you feel you could explore the city by playing the game?
3x yes, 2x no
Comments:
Subject 1: By improving it yes.
Subject 4: yes, if future versions fixes technical issues

4.2.3.2. Product Reaction Cards

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
1 Innovative Attractive Frustrating Innovative Personal
2 Approachable Creative Engaging High Quality Attractive
3 Slow Fun Friendly Confusing Slow
4 Stressful Confusing Confusing Frustrating Engaging
5 Frustrating Slow Fresh Difficult Confusing

Table 4.3.: Table showing the results of the Product Reaction Cards

4.2.3.3. General observations

The results of the play-testing and the focus group can be classified in two parts: tech-
nical and game play related issues.

Technical problems

1. GPS is not responding/ slow GPS-Connection
The low performance of the GPS and the processing time of the incoming data
causes an enormous distraction. For the subjects it was the most distracting
aspect of the field test and therefore a critical item of the game to be fixed. The
maps to navigate to the puzzles were slowly responding and misleading.

2. Rarely responding Touchscreen
The field test took place during a weather period with temperatures under the
freezing point. The touch screens of the devices didn’t respond every time they
were attended to. In this case the problem cannot be distinguished between the
cold or a general problem of the touch screen. In warmer environments the touch

170

screen of the HTC G1 phone has the same problems but not that often. This fact
is the second critical item to be fixed.

3. Puzzles crashing
The version of the software prototype used during the field test was never tested in
outdoor conditions. The data exchange and ratio was not stable. The applications
were restarted a couple of times. This problem did not affect every subject. In the
main the test it was not present in a critical way, but it is a critical item to fix too.

4. Preferences of the G1 Menu
Beside the game menu the preferences of the G1 phones have a menu for the
overall preferences like WiFi-Connection. This preferences have to be adjusted
sometimes especially after crashes or for trouble shooting. The subjects did not
have any experience with the phone and therefore had no clue about the phones
preferences. This problem cannot be completely fixed by the adjustment of the
game. The phones preferences (or the users) have to be modified for this.

5. Puzzle download duration
Waiting times were observed during the field test caused by downloading the
puzzles’ data. The gameplay was freezing because there was no indicator or
information for the players of what the current status was. This critical item can
be fixed with: a. faster downloads, b. information for the user to know what is
happening (progress bar) or c. a mix of both.

6. Display Size
The size of the screen in connection with tasks using images and/ or precise
movements was also a technical issue. In connection with the problem mentioned
in 2. the item is critical for the gameplay. It has to be commented that after a while
of using the device the player handled the tasks better. A learning effect of using
the devices was observed here.

7. Trackball moves unintentionally
The standard trackball on the G1 Device was activated unintended from time to
time by the users. This could be forced by the new way of using this device or a
design specific problem. In any case, this problem could be solved by deactivating
the trackball when is not needed.

Game play related problems

1. Puzzles had no introduction
The first playable prototype missed to have an introduction for every puzzle. It
was sometimes not obvious what to do for player at first sight. On the other hand
the subjects explored the puzzles by themselves without external help in a few
seconds. Concluding this facts introduction texts are not needed for easy puzzles.

171

But to assure that every player understands the task of the game an introduction
have to be implemented.

2. Missing highlighting on buttons
During the game phase it appears that some players had problems to recognize
highlighted buttons. In this case the green highlighted button for the help of a NPC
and scrollable text boxes.

3. Misleading map symbols
Symbols used during the navigation with a map (GoogleMaps related) showing
the position of the next puzzle and the player were rarely distinguished. That
leaded some of the subjects in the wrong direction. The problem was boosted
by the fact described in the technical problem 1) GPS not responding/ slow GPS-
Connection.

4. Text Clues were not clear
The texts provided to communicate hints were sometimes not clear to the sub-
jects. These texts have to be proved and changed if applicable. The information
has to be clear and explicit. In relation to B. the texts have to be as short as
possible to fit without scrolling.

4.2.3.4. Usability

Usability results were retrieved mostly from the play-test session, were most of the dif-
ficulties appeared, and players commented upon, either on location which was caught
on tape and analyzed later, or in the focus group session where the players engaged in
an open discussion about their experience with the game.

Amongst the product reaction cards results - presented in 4.2.3.2 - appears the words
frustrating and confusing quite often. The subjects expressed their confusion constantly
during, and after playing the game. The instructions were not clear, neither how to solve
the puzzle itself nor the overall goal was clear either. In the focus group following the
play-test session many of the subjects recommended that an example of the puzzle
being played could be presented to make it clear what the goal is.

Technically related problems were also encountered by the subjects as:
... ”i was in the right location but the puzzle did not appear ”
... ”clicking was annoying, had to click many times to them work ”
... “GPS did not work so good”
Such problems are related either to the phone itself having to have to touch the screen

many times until the user gets a response. Other reasons are the GPS sensitivity which
created a sense of confusion both in the testing sessions and the evaluation sessions.
Many of the subjects were very sure that they were in the correct location and were
simply waiting for the puzzle to appear, but that did not happen on many occasions,
making them rethink if that location was really correct or not, and basically not knowing
what to do.

172

The design of the user interface which is the NPC character design, game design with
menus and arrangement of elements as well of the animation of menus and controls of
the game received very positive comments:

... “nice graphics”

... “pictures were nice and professional”

... ”application looked professional”

Readability
The subjects remarks about this aspect were not positive, represented in the fol-

lowing:
... “readability not good”
... “too much text”
... “no scrolling bar is better ”
This implies the subjects dissatisfaction with the text, being the size of it – which did

require the player to scroll down to read it- also the size of the text did not fit well into
the mobile context, as a result of the device’s small screen’s size and having the small
screen also fit a number of features all together (e.g. text, NPC’s and graphics) which
played an important role in increasing the readability problem. On the other hand other
subjects argued that the game has learning aspects applied to it, and the amount of text
for that reason is reasonable. Another suggestion regarding readability by the subjects
was to allow the player himself to decide whether he wants to read more or not, simply
by putting a limited size of text on the screen accompanied with a “read more” button,
and use small chunks of text rather than long passages.

Interactions
Underneath this aspect interaction issues fall, represented by the device itself and

the game controls from within. From the product reactions cards results retrieved the
main adjective describing this is slow. This and other remarks have been directly ex-
pressed by the subjects when speaking of the interaction process, and is clear through
the following comments:

... “clicking was annoying, had to click many times to get them work ”

... “afraid to touch buttons on the phone”

... “could not hide the NPC”
The device at hand can be interacted with in two ways, one are the keyboard and

controls when sliding it open, this feature is not supported in StreetDroids. The other
way, that was the chosen one in StreetDroids, is to use the touch screen for control.
From the previous comments it is obvious that the phone posed some struggles on
the subjects when attempting to click or interact within the game. Some complained
that it was too slow and they got no reactions after clicking once or twice on a specific
location on the screen and had to do that repeatedly until it actually gets touched and
functions. The repeated touching of the screen, some even said they started touching
the screen everywhere to get some sort of a reaction, caused a sense of confusion for
the subjects. It had not given them any evident clue that something is happening in the

173

game based on their touch, so they simply kept on clicking elsewhere until something
happened. The screen was not very sensitive to any touch, and on many occasions the
same area had to be touched a number of times for it to be activated.

The size of the display of the phone posed some problems. Some subjects believed
it would be a lot better to use a touch pen instead of the fingers because touch pens
are more precise and smaller than the finger and might therefore decrease or eliminate
the problem presented above.

Subjects also expressed their fear to touch any of the buttons on the phone itself while
playing the game, fearing that it might turn off the phone, exit the application instantly,
place a call or any other phone-related action. They assumed the phone buttons were
only phone-related but actually they were made by the game designers to control the
game as well, one of those buttons for instance being a “quit game” button, after which
a confirmation message also appears.

Amongst the difficulties that appeared in the play-test regarding the game controls
is that many subjects complained about not knowing how to make the NPC disappear
-after he gives a clue or talks with the player- they tried touching the text bubble in
which the NPC’s text appears as well as on any location on the screen. It was in fact
designed to disappear by touching the small NPC icon itself that appears in the menu
at the bottom of the screen. Related to that, another problem appeared being that the
game menu which is at the bottom shifted to the bottom about another 50%. that made
the menu half visible and most probably not understood and not functional.

Feedback
Interaction having been described above did at many times make it very unclear for

the player to know whether he is getting feedback or not because of the low sensitive of
the screen, that affected the feedback system of the game negatively and required the
players at many points to repeatedly touch the screen on any location seeking a form
of reaction from the game. Other than the device’s touch screen capabilities was also
the GPS problem. Players were at many times in the correct location – where a specific
puzzle is supposed to appear- but yet did not get it. This also can be related to the
results of the product reaction cards using words in describing their experience as slow
and frustrating. Puzzles take some time to download upon reaching the designated
location and when this is happening no indication is given to the player that he is or not
in the correct location. GPS also created confusion when one subject got the puzzle at
a specific point “x” and another subject was in the same point “x” and did not get the
puzzle.

Help
In the beginning of the play-test many subjects were confused about what to do,

what to specifically follow on the screen, and during the focus group discussion they
suggested that a system of help could be helpful when on the map navigating from one
puzzle to the other. This help could be a:

. . . “arrows to show which way to go”

174

... “make the street to be followed marked in red”
In the game the player navigates from one location to the next by receiving hints,

interpreting them and then proceeding to this location. But some of these hints could
stand more than one answer. One hint asked the player to proceed to an administrative
building as in ...”You said you assume that people know where x building is. I wouldn’t
assume anything”. Some subjects said they skipped the instructions given at the be-
ginning of the puzzle and tried their luck solving it on their own because they did not like
to read a lot. Yet doing so placed them in a hard situation and many of them had to go
back to the instructions of the help for a clearer insight on the goal of the puzzle. The
help system in general was a point most of the subjects commented on saying there
was a clear lack of instructions, not knowing what to do in the beginning.

4.2.3.5. Playability

Playability results were mainly retrieved from the observation of the play-test session
and the analysis of the focus group. The results from the questionnaire were indirectly
considered; while the results of the product reaction cards were included in the analysis
of the focus group as the testers had the chance to comment on their selection of the
product reaction cards during the focus group.

Concentration:
As can be seen in Table 4.3 the majority of the subjects expressed that they felt

attracted or engaged in the game. During the focus group the subjects used adjectives
as innovative, friendly, fun and attractive to describe the game, however they also ex-
pressed their frustration specially with the technical problems that occurred. Despite
these problems the players were able to maintain their interest in the game and to keep
their focus. As one player explained: “My first one [adjective] was frustrating because
of all the restarting and not having the right location, but I could see behind all that and
I thought this [the game] would be cool (...) that’s why my second one [adjective] was
engaging because I really wanted to find out, although there were things preventing
me.”

While observing the play-test these type of reactions were evident. We could see
that the players kept trying to find the right location or to launch a puzzle even when the
system response was very slow or misleading. Even after having to restart the device
they did not give up and gave the game another chance. We attribute this behavior to
the attractive stimuli provided by the game that was worth of attention. In particular the
players said they “enjoyed the friendly graphics” and that the game looked professional.
As for the workload, the major issue were the technical problems that consumed much
of the players’ time and interfered with their concentration.

Learnability:
The learnability of the game was not very well rated and was perhaps one of the

major problems for the game playability. Players expressed that they felt frustrated and

175

confused because there were no instructions, or directions on how to use the game.
To the question One thing that you think that is missing in the game? the majority
answered that they were missing clear instructions. Some expected a long manual,
and some others said they would never read a long manual or even try a separate
tutorial. “When you start the game you don´t know anything about items or hints (. . .)
you are not going to read the help file when you open it, you just wanna turn it on and
use it.” To this issue one subject suggested that “Maybe for each puzzle you can do an
example in the beginning were you show what you want us to do”. During the play-test
we could observe that these problems with the game learnability, which involved the
game interface as well as the game content.

On the challenge criteria we could observe that many of the players had difficulties
understanding the directions or hints to find the locations. Moreover, they expressed
that the challenges in the game felt unbalanced, as they felt that finding the right location
of the puzzle was much more difficult than solving the actual puzzle. On this topic one
player suggested that we “Make it easy to find the place and then make sure that the
player has to find something else at that place (. . .) or maybe the longer it takes give
better clues.”

Control:
More play-testing would be needed to know if the players were able to feel control

in the game, because the results of the evaluation where not conclusive for this criteria.
There were many usability issues related with the controls of the interface i.e. difficulties
with pressing buttons or understanding the menu options, and problems with location
feedback. This usability issues made difficult to determine if the players were able to
sense that their actions and choices have a meaningful influence in the game because
the game flow was interrupted many times by the technical problems.

Clear goals:
As the learnability of the game was very low it was no surprise that the game

objectives and goals were not clear for many of the players. During the play-test we
could observe that the subjects found out very late that they could obtain an item after
solving a puzzle, and if they did so, they did not pay much attention to it. When asked
during the focus group if they noticed the item obtained after solving a puzzle, all of the
subjects answered that they did not care much about it and many said that they skipped
it without reading the information attached to it. It was also observed that some players
had troubles to find the hint or help option offered by the NPC, which made it more
difficult for them to finish the puzzle. One player even asked “Do you receive an item
after you read the text [that comes with after you solve the puzzle]? (...) I thought that
was an additional information.” This shows the lack of clarity and consistency in how
the goals of the game are presented (or not presented at all). From this we concluded
that since the players were not aware of the rewards or help options, they did not get a
full sense of achievement after playing the game.

176

Immersion:
During the focus group many of the players described the game as engaging and

attractive, and they also affirmed that they could explore the city and appreciate it in
a different way. However, there are no conclusive results for the criteria emotional
involvement. Especially because the prototype used during the play-testing did not
offer a full game mission, it only offered the players a couple of puzzles to try. For this
reason the players did not have the chance to know the full story that the concept of the
Bremen map included. This limited the players’ possibilities to get emotionally involved
with the game environment. Immersion was then analyzed in a more general way.

During the play-testing it was observed that immersion, as concentration, was also
affected by the technical problems that occurred such as the slow download time of the
puzzles or the incorrect or delayed location feedback. These issues were discussed
in the focus group and the players agreed that even though they were attracted by the
game they experienced frustration because of the technical problems that occurred.
However, the players affirmed that if the problems were solved the game experience
would be different. One particular subject said: “...if everything was not slow, but very
fast without interruptions the game is very interesting because it seems like a treasure
hunt, and if there is no delay, no errors, it is extremely interesting.”

Besides the technical difficulties, that many of the players experienced in one way
or another, some of them complained that they felt interrupted with the amount of text
they received. They affirmed that the game would be more interesting if there was less
text to read and if it was offered in a brief and more attractive manner. They suggested
presenting the text as some sort of headlines with the option to read more if wanted.
“To me it would be more interesting if the game had the cool stuff, the most interesting
things like you have on the cover of a magazine. Short hints [information] about the
place and then you can read something more if you are interested.” Other players were
not bothered by the amount of text and enjoyed the additional information. However,
they said that they could agree with the “headline” option as long as they had the
chance to get the additional information when they wanted.

Social Interaction:
This element from the playability model was not fully evaluated during the play-

test because the prototype used did not include any of the collaboration features and
the online community was also not tested. Nevertheless, during the focus group the
subjects were asked questions that allowed us draw some conclusions as well as to
collect suggestions that could help improve the design of the collaboration in the game
and in the online community.

When we asked the subjects if during the play-test they considered asking people
on the street for help to solve the puzzles or find the locations, there was a general
agreement that it was not necessary. One player affirmed that she felt the game was
very personal. Others said that asking for help to someone outside the game would not
be productive because you could get many different answers and other people do not
know what is going on in the game.

177

As for asking help from other players, many said they did it. Those who asked other
players for help explained that they did it because they were confused and did not know
what to do, specially in the beginning. During the play-test we could observe that, as
the game started and the players did not have clear instructions, they got together in
small groups and tried to find out what to do and how to do it. They discussed and tried
different strategies until they figured out the way to find the location or how to solve a
puzzle. However, in the end subjects were playing individually an only asked for help
when there was a serious technical problem. To this situation one player added that “ [in
that situation] it was ok that we had the group, but if you are alone the game has to be
just clear and well described in the beginning or otherwise it would be very frustrating.”

During the focus group we explained the subjects our concept for a collaborative
puzzle and we asked if they would like to play with strangers. The majority said that
playing together with friends would be fine but not with strangers. One of the answers
was that: “It’s too weird (. . .) Because then someone knows where you are, they could
stalk you”. Another subject said that “this is a very personal game, and just maybe if
you get some help from people on internet, people that have already played this game
(...) it would not be so important, just another option, something extra in the future (...)
like chatting but not physically meet, you don´t say to someone you don´t know ’hey
would you like to join’.”

In this point the players were very clear and they all agreed that they would not like to
meet face-to-face with other players they do not know. Some did not want to play with
strangers at all. However, they could consider playing with strangers if they could use a
more impersonal way of communication or if they could hide their location. One subject
proposed that “maybe one player can communicate information from the place he is to
another player that is not there, so they can share information.”

Finally we presented our concept for an online community where players could create
their own games, as Story maps, puzzles or missions. We explained them that there
would be editors for many of the game components and that, despite some limited
options, they could create new content by making new components for the game or edit
existing ones. The overall reaction was that they liked the idea and could see that it
could be very interesting for some people. However, many said that they will probably
not create any content themselves.

4.2.3.6. Satisfaction

After the play-test the subjects had the possibility to choose the adjectives from the
product reaction cards. In Figure 4.3 the results are displayed in a tag cloud5 that
shows which adjectives had the most occurrence. The complete list of used adjectives
can be seen in the Table 4.3 in 4.2.3.2.

5Made with http://tagcrowd.com/

178

Figure 4.3.: Tagcloud with the used adjectives in the Product Reaction Cards.

On the one hand, the first impression shows that many of the players had the feeling
that the game is frustrating, confusing and slow. On the other hand however, the sub-
jects also mention that the game is innovative and attractive. In the following the results
will be analyzed in more detail in order to get a better understanding why the subjects
chose the named adjectives.

The game concept6

The subjects were interested in the general game idea (Question 9), although only
one of them had some experience with similar games before (Questions 4-7). In the
focus group the subjects mentioned as well that they like the game idea, but they were
not satisfied with the technology. Too many problems occurred during playing, which
hindered them in experiencing all the possibilities the game has to offer. One subject
said for example: “All the restarting and not having the right location (. . .) I could see
behind all that stuff and think wow this should be cool if it did what I wanted it to do.”

Players were mainly frustrated, because...
. . . the phone reacts too slowly.
. . . the GPS position is not accurate.
. . . puzzles are not loaded.
. . . the application crashes.
Right from the beginning of the focus group it was getting obvious, that the whole

group was frustrated due to technical problems. Hence one of the subjects mentioned:
“(...) I had technical problems, but i really wanted to do that, so i tried once, the second
time... and unfortunately every other time was even worse with the location and stuff
like that, so it was more frustrating (. . .)” The disappointment of not being able to load

6The questions in brackets refer to the questionnaire in Part 4.2.3.1

179

all the puzzles for example was high. Only one of the participants had the chance to try
out the Hotspot Puzzle. Yet, all the subjects were eager to unlock the second puzzle
and tried over and over again. Specifying one of the problems and yet his interest
in playing one participant stated: “If everything was not slow, very fast, very quickly,
without interruptions then it is very interesting because it seems like a treasure hunt.
And if there is no delay there is no pauses, there is a lot of time, something like that, it
is extremely interesting.”

One of the main complaints of the subjects was the lack of instructions. They said
they would have preferred to get more information on how to play the game (Question
10), especially how to solve the puzzles. Nevertheless, they were still able to play the
game without much instructions.

Players in general agreed that due to the novel concept the game has to offer, it is...
. . . engaging.
. . . innovative.
. . . personal.
As (González Sánchez et al., 2009) mention the main objective of a game is to enter-

tain, to bring fun to the player. One of the players used the successive phrasing: “(...) It
seems like a really powerful platform you guys have and that you can do a lot with it and
it was a lot of fun. I could see that it could be fun (. . .)” The overall impression drawn
from the observation is that the subjects were excited about playing, as they were very
ambitious in finding the correct locations and in solving the puzzle. It therefore can be
concluded that they can imagine to play StreetDroids or a similar game again (Question
9).

Another aspect mentioned by (González Sánchez et al., 2009)is the topic of attrac-
tiveness, which is an aspect of a game that increases the satisfaction of the player.
Everyone agreed that the graphics of the game are of high quality and they were very
enjoyable. One statement representing these feelings towards the game was the fol-
lowing: “(. . .) that’s why my second one [adjective] was engaging.... cause it was really
like... i really wanted to find out but there was things like preventing me from getting
to that cool (...) game stage.” Another subject also decided for the adjective engaging,
“(...) because anyway if you like history if you like things like that, you just try to search
the place and learn everything. (...)”.

The outdoor scenario
Before playing we asked the subjects, if they like playing a mobile game outside

(Question 3). Only one of them answered with yes, four of the subjects did not like the
idea at all, and one could not decide. Nevertheless, after playing the game four of the
subjects said they could imagine to play such a game again, and only two answered
with no (Question 9). One of the biggest problems the outdoor scenario presents is the
dependency on the weather conditions. A problem related to that is the touch screen of
the G1 which can only be used without gloves. As during the evaluation the conditions
were not ideal, it was about -12°C and very windy, most of the participants were wearing
gloves to cover their hands, which complicated the handling of the mobile device con-

180

siderably. It therefore needs to be said, that in order to have a better understanding of
how well the outdoor scenario works, some play-testing in different weather conditions
would be necessary.

The exploration
In the questionnaire that was posed directly after playing the game, most of the

subjects had the feeling they could explore the city, at least under the terms of having
less technical difficulties. Although in the beginning almost none of the players could
imagine to enjoy playing outdoors (Question 3), they enjoyed exploring the city center
of Bremen while playing. For more details on exploration aspects take also a look at
4.2.3.7 Explorability.

4.2.3.7. Explorability7

In the beginning the subjects were asked whether they themselves had the impression
that they were able to explore the city, to evaluate if an interaction with the environment
was happening as planned and if the player really explored their surroundings in order
to solve the puzzles. Three subjects answered with yes, two with no, but those two men-
tioned that they could imagine being able to explore the city, if the technical problems
they were experiencing while playing were solved.

Throughout the game the players receive textual hints that are connected to some-
thing they can see in real life. This supports their understanding of the space they are
acting in. The group did not agree on the question whether more or less text would
be better to support the learning outcome. Some of the subjects stated that they would
prefer less information, similar to a headline of a paper, and only in case the player is in-
terested to show more information. Other players said that they think the amount of text
was adequate, especially because the player is supposed to study his surroundings.

One difficulty concerning the explorability that occurred during the discussions, was
that the subjects said they had problems with the instructions. For them it was not
always clear where to go, as for example one of the hints asks them to go to an admin-
istrative building, but for them it was not obvious which building could be meant by that.
One of the subjects mentioned the following: “You said you assume that people know
where x building is. I wouldn’t assume anything.”. Having trouble finding the locations is
problematic, as the players might explore something else but the desired location and
the prepared information do not fit to that.

They all agreed that the instructions to find the place should be easier, because it was
one of the most frustrating points for them while play-testing. If they knew better where
to go to, they could focus more on looking at their surroundings while walking to their
destination and concentrate on the puzzle, where they also have to take a close look at
buildings for instance. One of the players put it into the following words: “You have to be
there to know the answer, but maybe make it really easy to get there like...okay here is
the building but then really inspect the building (...)” This means that the hints need to

7Written by Jana Wedekind

181

be revised and probably several play-test sessions would be needed in order to make
sure that they are understandable by people with different backgrounds.

It was important to find out if the subjects could remember factual knowledge that
they were presented with during the puzzles. As the players for instance have the
possibility to learn something about a building at-site, the chances that they will connect
this knowledge better with the real object are higher. In order to understand if the
subjects learned new facts, we asked them in the questionnaire, as well as in the focus
group what they remembered. Everybody agreed that they learned something about
the history and the city of Bremen. One subject mentioned this: “I can remember
some facts about the sailors coming to Bremen in medieval times.”. Another one said
“I learned something regarding the architecture of the Rathaus. (. . .) And the statute...
the Roland one.” This shows that the subjects could indeed connect their knowledge to
some specific places they visited.

One argument that supports the theory of exploration while playing is that subjects
proposed to have the possibility of making a pause in between. One subject for instance
was curious about the market and wanted to stop and eat there. For the players explo-
ration means taking the time to discover. It became very obvious during the discussion,
that the subjects rejected the idea of playing this kind of game on time. As one player
said: “You will lose the objective of the game, because if it is like according to time, you
won’t read... you will just hurry up... and the idea is to discover the city and the details.
(. . .)” They all preferred to have time to explore the city, and might even take a break in
between playing to relax and enjoy the surroundings.

After the analysis it became obvious that it would be interesting to implement a func-
tionality that allows the user to receive information about buildings or points-of-interest
on-site while playing in real-time. This was suggested by some of the subjects and it
could indeed improve the exploration of the players. This information could include ad-
ditional facts, which are not only related to the next puzzle, but support the individual
interests of the player. Moreover, this would take into consideration the interest that the
subjects showed in exploring the space given in more detail and at their own pace.

182

4.3. Future Work8

8Cristina Botta, Isabella Lomanto

183

The concept is finished, but still open for various adaptations in the future. Due
to time constrains, only a prototype, which still lacks many of the planned features,
was developed. Furthermore some major technical problems were noticed during the
evaluation process, which would have to be resolved for the game to be usable in a real
world scenario. Additionally some game-play related problems were also observed, and
if solved would greatly improve usability and enjoyment of the game. More information
about those problems can be found in section 4.2.3.3, “General Observations”.

In the next paragraphs further possible improvements in the areas of content, collab-
oration, design, technical implementation, and evaluation will be discussed.

Content
One of the main characteristics of the game is that the user can actively contribute

to the game by creating content. In the prototype of the game, basic characters and
elements that the player can re-use were developed. Future work could include the
development of further characters and objects. In addition, more Story Maps could be
implemented and offered to the user.

Additionally, not all content researched for the Bremen history Story Map was imple-
mented, and only three puzzles were developed from it. Future work could involve the
further development of missions and puzzles for this scenario. The original plan was to
have four missions comprising different periods of Bremen’s history, each containing at
least five puzzles.

In-game Collaboration
During the concept phase of the collaborative puzzles the appropriate research

in the field of collaborative games creation was done. During the design phase the
necessary algorithm was structured explaining step-by-step the player’s actions and
the logic of the puzzles, which should be programmed on the server side. Eventhough
the concept and design phases are finished the technical implementation has not been
started. A clickable prototype, which offers a common ground for both, designers and
programmers, and simplifies further work, was developed. A proposal developed for the
server-client communication and the logic algorithm should simplify the programmers’
work, but it does not exclude possible difficulties. These difficulties can influence some
steps of the algorithm, but nevertheless will not change it drastically.

Web Platform
The web platform was only partially developed, and there is room for improvements

also in the already implemented part. User profiles were not fully implemented and
only a basic layout, create account, login/logout, and some basic statistics are working.
Some sorting and display functions of the created elements exist, but more sofisticated
means would be needed, for example, sorting and searchin by specfic types, tags,
creator, etc. Adding a forum would also be necessary for a community oriented website.
It was not also not possible to test the current layout and design for usability, which
would be very important for a platform that has a large user base in mind.

184

Editors
Only two puzzle editors were fully implemented, for the Drag and Drop, and for the

Hotspot puzzles. Development for the Missing Part puzzle, Characters, and Mission
editors were started, so future work would include finishing those. Development of the
items editor was not started. A functionality that was planned, and could be developed
in the future, is the possibility to edit the already created elements.

Indoors Implementation
The initial implementation is for outdoor use only, but the general concept is appli-

cable indoors as well. Nevertheless, the used technology has to be adapted, as for now
GPS is used for locating the user, which is not a feasible solution for indoors. It has
to be explored to which extend the technical requirements can be re-used, and which
parts need to be rebuild.

Client Architecture
One of Android’s peculiarities, which has been mentioned in section 3.2.2.1, “Activ-

ities”, is the activities concept of the mobile platform application. The activity structure
used in the final application design concept lacks some screens defined in the game
mechanics document. This happened because during the game’s concept implemen-
tation all features were prioritized, and only the ones with high priority made their way
to the final prototype. Nonetheless, while developing this activities model a possibility
for further development was always considered. Therefore, there is already a place
reserved for those features which were not implemented yet, but could be included
in future releases. The architecture which is currently in use has evolved during the
project’s development, and it is possible to continue this evolution if further develop-
ment happens.

Adding New Puzzles
The possibility to implement new puzzle types exist through the creation of two

main classes. One class extends the generic abstract class, and the other contains the
logic specific to that puzzle. There is also the possibility to separate the view from the
logic and create a new class for the view. It is important to understand how to extend
the generic PuzzleActivity class and override the functionality of the methods in
such a way that will suit a specific puzzle.

Technique for Image Recognition
During the project time all the steps of the algorithm related to the server side

were implemented. All the functions are commented and described, and the use of
the functions inside of the algorithm is clear. Nevertheless, the functions on the client
side were implemented and tested only as a prototype and were not included in the
puzzle. At the time of this writing the final integration of the puzzle has not yet been
finished. One of the possible steps towards improvement could be to implement the

185

comparison of the accelerometer’s data on the client side to the contextual information
of the original image provided by server. The deployment of these steps will influence
the core structure of the server side and should be done jointly. It also influences
the mobile part and forces the improvement of the application for uploading images
to the web-server from the mobile device. Another possible direction can be the final
integration of the puzzle into the structure of the project, testing, and further evaluation.

Augmented Reality
One of the possible expansions of this project is the implementation of augmented

reality puzzles to create an even more engaging experience. For example, overlaying
graphics of how a place used to look in the past over a current image presented on the
screen, or showing extra information about the locations. More ideas of possible uses
for AR in StreetDroids can be found in section 2.2.5, Mixed Reality.

Design Considerations for Small Screens
An important issue regarding future work on the design interface is the adaptation

for different screen resolutions. The Android platform is available for devices with sev-
eral different screen resolutions (Google, 2010j), and with different aspect ratios. It is
not enough to simply scale the game to different resolutions, it is needed to adapt for
different space proportions.

If the game is to be used by several kinds of users, it is important to consider the
age factor. Discount-age applications have been developed (BBC, 2010), together with
some criteria for the product interface design, such as simple and minimalist start menu
and large icons and fonts.

“Adaptable interfaces, where the user can adapt a generic interface for his
or her disability, are frequently put forward as a solution for the dynamic di-
versity exhibited in older users discussed in this section. Some people might
say that those with different needs are supported by systems that allow the
users to configure the interface to their own requirements. Microsoft Win-
dows, for example, offers several adaptations, which can be invoked by the
users to help them use the interface.” (Pirhonen et al., 2005)

Another issue for future implementations is the translation of the game, towards the in-
ternalization of StreetDroids. To this end, it is necessary to use only simple instances of
English text, whenever possible. “Simple English text will be easier and less expensive
to translate.” (Galitz, 2008 Pg 571). As a recommendation, German should be the first
European choice (after English) [idem] and, in this context, StreetDroids was placed in
a positive environment.

Evaluation
Due to the limitations of time and availability of human resources the results of

the evaluation can only be called preliminary. An improved concept and further play-
test sessions with more than six subjects would be necessary to obtain more conclusive

186

data. At that time the web platform was being developed, as were the puzzle, character,
and mission editor. These features were not evaluated because they were not complete.
However, for the evaluation process to be complete, and for the concept to be validated,
all parts would have to be tested together.

187

5. Conclusion1

1Cristina Botta, Isabella Lomanto

188

Due to the limitations of time and human resources in the project the results showed
on this report can only be called preliminary. The created concept proved to be very
complex and difficult to develop. Time restrictions, the size of the team, and the dif-
ferent levels of knowledge were equally hard to manage. Additionally, exercising more
constrain during the concept phase could have helped to keep the features more man-
ageable.

Despite all the difficulties, the team was able to develop working prototypes of the
most important concepts. Unfortunately, only the mobile client prototype could be tested
since the web platform was not complete at the time of the evaluation. However, with
the results of the evaluation we can assume that the original research question was
answered in a positive manner.

Even though, StreetDroids is not necessarily a learning game, the evaluation showed
that the subjects actually learned about the given content and connected it to the visited
places. The interaction with the environment as well as with other players can create an
immersive experience for players, which can motivate and enhance learning processes.

As mentioned in section 4.3 Future Work there are different ways and directions in
which the game could be expanded. An improved concept, fixing of the technical prob-
lems, and further play-test sessions with more subjects would be necessary to obtain
more conclusive data. However, the results at this point already show that spatial ex-
pansion can be achieved by using the presented game concept. In contrast to similar
games at present, StreetDroids’ objective is not only about using today’s technology to
lead the players to certain locations, but to make them aware of their surroundings. This
objective was reached as the game allowed the players to connect the game world to
the real world, to join digital content with real life objects as part of a pervasive gaming
experience. Moreover, the evaluation showed that besides offering a meaningful way of
interacting with their environment, the subjects also enjoyed this exploration and could
imagine playing this game or a similar one again.

189

Bibliography

Rup - role: Stakeholder, 2003a. URL http://rup.hops-fp6.org/process/
workers/wk_sthld.htm.

Rup - artifact: Vision, 2003b. URL http://rup.hops-fp6.org/process/
artifact/ar_vsion.htm.

S. Akkerman, W. Admiraal, and J. Huizenga. Storification in history education: A mobile
game in and about medieval amsterdam, 2008. URL http://www.ilo.uva.nl/
homepages/wilfried/docs/CAE_2008_online.pdf. [Accessed: 04.05.10].

ApacheSoftwareFoundation. The jakarta commons httpclient, February 2008. URL
http://hc.apache.org/httpclient-3.x/. [Accessed: 2010.04.01].

Carmelo Ardito, Maria Francesca Costabile, Rosa Lanzilotti, and Thomas Pederson.
Making dead history come alive through mobile game-play. pages 2249–2254,
2007. URL http://doi.acm.org/10.1145/1240866.1240989. [Accessed:
04.05.10].

Christine Bailey and Michael Katchabaw. An emergent framework for realistic psy-
chosocial behaviour in non player characters. In Future Play ’08: Proceedings of the
2008 Conference on Future Play, pages 17–24, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-218-4. doi: http://doi.acm.org/10.1145/1496984.1496988. [Ac-
cessed: 04.08.10].

BBC. Bbc news | technology | new pc to encourage older users, 10 2010. URL http:
//news.bbc.co.uk/2/hi/8352606.stm. [Accessed: 10.01.10].

J. Benedek and T. Miner. Measuring desirability: New methods for mea-
suring desirability in the usability lab setting, 2002a. URL http://www.
microsoft.com/usability/UEPostings/DesirabilityToolkit.doc. [Ac-
cessed: 04.01.2010].

J. Benedek and T. Miner. Product reaction cards, 2002b. URL http://www.
microsoft.com/usability/UEPostings/ProductReactionCards.doc.
[Accessed: 03.26.2010].

James Bennett. Writing reusable applications, 2008. URL http://media.
b-list.org/presentations/2008/djangocon/reusable_apps.pdf. [Ac-
cessed: 2010.03.29].

190

I. Blecic, A. Cecchini, and P. Tronfio Rizzi. An innovative perspective for gaming simu-
lation in making dead history come alive through mobile game-play. pages 337–348,
2002.

Joachim Bondo. iPhone User Interface Design Projects. Apress, Inc. New York, 2009.

Thomas Boutell. Portable network graphics (png) specification, November 2003. URL
http://www.w3.org/TR/PNG/. [Accessed: 03.28.10].

Tim Bray and Jean Paoli. Extensible markup language (xml) 1.0, November
2008. URL http://www.w3.org/TR/REC-xml/#sec-cdata-sect. [Accessed:
2010.04.01].

BremenOnline. Bremen.de - fascinating facts about bremen, 08 2009. URL http:
//bremen.de/10293754. [Accessed: 08.26.09].

Sean Casey, Ben Kirman, and Duncan Rowland. The gopher game: a social, mobile,
locative game with user generated content and peer review. In ’07: Proceedings
of the international conference on Advances in computer entertainment technology,
pages 9–16, New York, NY, USA, 2007. ACM. URL http://doi.acm.org/10.
1145/1255047.1255050. [Accessed: 04.05.10].

Elizabeth F. Churchill, Les Nelson, Laurent Denoue, Jonathan Helfman, and Paul Mur-
phy. Sharing multimedia content with interactive public displays: a case study. pages
7–16, 2004. URL http://doi.acm.org/10.1145/1013115.1013119. [Ac-
cessed: 04.05.10].

Roger L. Costello. Building web services the rest way. URL http://www.xfront.
com/REST-Web-Services.html. [Accessed: 2010.03.29].

Claudia Dappen. Bremen entdecken und erleben. 2008.

Hugh Davies. Place as media in pervasive games. In IE ’07: Proceedings of
the 4th Australasian conference on Interactive entertainment, pages 1–4, Mel-
bourne, Australia, Australia, 2007. RMIT University. ISBN 978-1-921166-87-7.
doi: http://delivery.acm.org/10.1145/1370000/1367963/a7-davies.pdf?key1=
1367963\&key2=2496201721\&coll=GUIDE\&dl=GUIDE\&CFID=83814451\
&CFTOKEN=34442824. [Accessed: 04.01.10].

Bernie DeKoven. The Well-Played Game. iUniverse, February 2002. ISBN
0595217907, 9780595217908.

Heather Desurvire and Charlotte Wiberg. Game usability heuristics (play) for evaluating
and designing better games: The next iteration. In OCSC ’09: Proceedings of the
3d International Conference on Online Communities and Social Computing, pages
557–566, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-02773-4. doi:
http://dx.doi.org/10.1007/978-3-642-02774-1_60. [Accessed: 04.04.10].

191

Heather Desurvire, Martin Caplan, and Jozsef A. Toth. Using heuristics to evaluate the
playability of games. pages 1509–1512, 2004. URL http://doi.acm.org/10.
1145/985921.986102.

Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-
Comput. Interact., 16(2):97–166, 2001. ISSN 0737-0024. doi: http://dx.doi.org/10.
1207/S15327051HCI16234_02. [Accessed: 04.05.10].

Software Foundation Django. Form wizard documentation. URL http://docs.
djangoproject.com/en/dev/ref/contrib/formtools/form-wizard/.
[Accessed: 2010.03.29].

Paul Dourish. Re-space-ing place: "place" and "space" ten years on. In CSCW ’06:
Proceedings of the 2006 20th anniversary conference on Computer supported coop-
erative work, pages 299–308, New York, NY, USA, 2006. ACM. ISBN 1-59593-249-6.
doi: http://doi.acm.org/10.1145/1180875.1180921. [Accessed: 02.04.10].

T. M. Duffy and D. H. Jonassen. Constructivism and the Technology of Instruction: A
Conversation. Lawrence Erlbaum Associates, Mahwah, NJ, USA., 1992.

Carlo Fabricatore, Miguel Nussbaum, and Ricardo Rosas. Playability in action
videogames: a qualitative design model. Hum.-Comput. Interact., 17(4):311–368,
2002. ISSN 0737-0024. doi: http://dx.doi.org/10.1207/S15327051HCI1704_1. [Ac-
cessed: 04.01.10].

R. Fielding, UC Irvine, and J. Gettys. Hypertext transfer protocol – http/1.1, June 1999.
URL http://www.ietf.org/rfc/rfc2616.txt. [Accessed: 2010.04.01].

B. Fox. Game Interface Design. Thomson Course Technology PTR, Boston, 2005.

G. R. Frederick and R. Lal. Begining Smartphone Web Development. Apress, Inc. New
York, 2009.

W. O. Galitz. The Essential guide to User Interface Design: An Introduction to GUI
Design Principles and Techniques - 3rd edition. John Wiley & Sons, New York, USA,
2008.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. El-
ements of Reusable Object-Oriented Software. Addison-Wesley, Amsterdam, 1995.

Adrian Kaehler Gary Bradski. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media, 2008.

C. Ghaoui. Encyclopedia of Human Computer Interaction. Idea Group Reference, 2006.

192

José Luis González Sánchez, Natalia Padilla Zea, and Francisco L. Gutiérrez. From
usability to playability: Introduction to player-centred video game development pro-
cess. In HCD 09: Proceedings of the 1st International Conference on Human Cen-
tered Design, pages 65–74, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-
3-642-02805-2. doi: http://dx.doi.org/10.1007/978-3-642-02806-9_9. [Accessed:
04.01.10].

Google. Google xml document format style guide, 2008. URL http://
google-styleguide.googlecode.com/svn/trunk/xmlstyle.html. [Ac-
cessed: 2010.03.29].

Google. Android developers: Activity, 2010a. URL http://developer.android.
com/reference/android/app/Activity.html. [Accessed: 03.31.10].

Google. Android developers: Alpha animation, 2010b. URL http://developer.
android.com/reference/android/view/animation/AlphaAnimation.
html. [Accessed: 31.03.10].

Google. Android developers: Animation, 2010c. URL http://developer.
android.com/reference/android/view/animation/Animation.html.
[Accessed: 31.03.10].

Google. Android developers: Button widget, 2010d. URL http://developer.
android.com/reference/android/widget/ButtonWidget.html. [Ac-
cessed: 31.03.10].

Google. Android developers. http://developer.android.com/index.html, 03 2010e. URL
http://developer.android.com/index.html. [Accessed: 03.16.10].

Google. Android developers: Image button, 2010f. URL http://developer.
android.com/reference/android/widget/ImageButton.html. [Ac-
cessed: 31.03.10].

Google. Android developers: Image view, 2010g. URL http://developer.
android.com/reference/android/widget/ImageView.html. [Accessed:
31.03.10].

Google. Android supported media format: Image format, 2010h. URL http:
//developer.android.com/guide/appendix/media-formats.html. [Ac-
cessed: 31.03.10].

Google. Android developers: Motion event, 2010i. URL http://developer.
android.com/reference/android/view/MotionEvent.html. [Accessed:
31.03.10].

Google. Supporting multiple screens | android developers, 03 2010j. URL http:
//d.android.com/guide/practices/screens_support.html. [Accessed:
03.25.10].

193

Google. Android developers: Rotate animation, 2010k. URL http://developer.
android.com/reference/android/view/animation/RotateAnimation.
html. [Accessed: 31.03.10].

Google. Android developers: Scale animation, 2010l. URL http://developer.
android.com/reference/android/view/animation/ScaleAnimation.
html. [Accessed: 31.03.10].

Google. Android developers: Translate animation, 2010m. URL http:
//developer.android.com/reference/android/view/animation/
TranslateAnimation.html. [Accessed: 31.03.10].

Google. Android developers: Handling ui events, 2010n. URL http://developer.
android.com/guide/topics/ui/ui-events.html. [Accessed: 31.03.10].

The Hanse. City league the hanse, 2009. URL http://www.hanse.org/en/the_
hansa/. [Accessed: 09.04.09].

C. Hardy. Activity theory - an introduction, n.d. URL http://osiris.sunderland.
ac.uk/~cs0car/hci/3_con_at.htm. [Accessed: 09.28.09].

Barbara Hayes-Roth and Patrick Doyle. Animate characters. Autonomous Agents and
Multi-Agent Systems, 1(2):195–230, 1998. ISSN 1387-2532. doi: http://dx.doi.org/
10.1023/A:1010019818773. [Accessed: 04.08.10].

J. Henderson. The paper chase: Saving money via paper prototyping. may
2006. URL http://www.gamasutra.com/features/20060508/henderson_
01.shtml. [Accessed: 04.08.10].

O. Hennessy and C. Kane. iPhone Games Projects, chapter Starting with a Game
Design Document: A Methodology for Success, page 132. Apress, Inc. New York,
2009.

Adrian Holovaty and Jacob Kaplan-Moss. The django book.
http://www.djangobook.com/, 2009a. URL http://www.djangobook.com/.
[Accessed: 03.27.10].

Adrian Holovaty and Jacob Kaplan-Moss. The Definitive Guide to Django: Web Devel-
opment Done Right. Apress, Berkeley, CA, second edition edition, 2009b.

Andrew Hunt and David Thomas. The pragmatic bookshelf. list of tips.
http://www.pragprog.com/the-pragmatic-programmer/extracts/tips, 2000. URL
http://www.pragprog.com/the-pragmatic-programmer/extracts/
tips. [Accessed: 03.27.10].

H. Irgtel. H. irgtel - color systems: Johann wolfgang goethes’s farbenkreis, 03
2010. URL http://www.uni-mannheim.de/fakul/psycho/irtel/colsys/
GoetheFarbkreis.html. [Accessed: 03.23.10].

194

11581-1:2000(E) ISO/IEC. Information technology - User system interfaces and sym-
bols - Icon symbols and functions - Part 1: Icons - General. ISO, Geneva, 2000.

Henry Jenkins. Textual Poachers: Television Fans and Participatory Culture. Routledge,
New York, 1992.

Henry Jenkins. First Person: New Media as Story, Performance, and Game., chapter
Game Design as Narrative Architecture., pages 118–130. The MIT Press, 2004.

Henry Jenkins. Convergence Culture: Where Old and New Media Collide. NYU Press,
2006. ISBN 0814742815, 9780814742815.

D.H. Jonassen and L. Rohrer-Murphy. Activity theory as a framework for designing
constructivist learning environments. ETR&D, 47:61–79, 1999.

M. Jones and G. Marsden. Mobile Interaction Design. John Wiley & Sons, Ltd., 2006.

Aki Järvinen, Satu Heliö, and Frans Mäyrä. Communication and community in digital
entertainment services. prestudy research report, 2002. URL http://tampub.
uta.fi/tup/951-44-5432-4.pdf. [Accessed: 04.03.10].

Jacob Kaplan-Moss. Snakes on the web, 2009. URL http://jacobian.org/
writing/snakes-on-the-web/. [Accessed: 2010.03.29].

V. Kaptelinin. Activity theory: implications for human-computer interaction. pages 103–
116, 1995.

Eric Klopfer. Augmented Learning: Research and Design of Mobile Educational
Games. MIT Press, 2008.

KMBdesigns. The meaning of the color grey / gray, 03 2010. URL http://www.
kmb-designs.com/colors/grey.html. [Accessed: 03.23.10].

A. Kofod-Petersen and S.A. Petersen. Learning at your leisure: Modelling mobile col-
laborative learners, 2008.

Hannu Korhonen and Elina M. I. Koivisto. Playability heuristics for mobile games. pages
9–16, 2006. URL http://doi.acm.org/10.1145/1152215.1152218.

P. Kortum. HCI Beyond the GUI: Design for Haptic, Speech, Olfactory, and Other Non-
traditional Interfaces. Morgan Kaufmann, 2008.

R.A. Krueger and M.A. Casey. Focus Groups: A Practical Guide for Applied Research.
Thousand Oaks, CA: Sage Publications, 3rd edition, 2000.

K. Kuutti. Activity theory as a potential framework for human-computer interaction
research. In B. A. Nardi, editor, Context and consciousness: Activity Theory and
Human-Computer Interaction, pages 17–44. MIT Press, Cambridge, MA, 1996.

195

J. Laird and M. van Lent. Interactive computer games: human-level ai’s killer appli-
cation. In AAAI National Conference on Artificial Intelligence, pages 1171–1178,
2000. URL http://doi.acm.org/10.1145/1178823.1178828. [Accessed:
04.08.10].

LearningTheoriesKnowledgebase. Cognitivism at learning-theories.com - learning
theories knowledgebase, 2010. URL http://www.learning-theories.com/
cognitivism.html. [Accessed: 09.21.09].

Jinah Lee and Chang-Young Im. A study on user centered game evaluation guideline
based on the mipa framework. pages 84–93, 2009. URL http://dx.doi.org/
10.1007/978-3-642-02806-9_11.

Pierre Levy. Collective Intelligence: Mankind’s Emerging World in Cyberspace. Perseus
Books, Cambridge, MA, USA, 1997. ISBN 0306456354. Translator-Bononno, Robert.

A. Liljedal. Design implications for context aware mobile games. 2002. URL http:
//www.enactive.com/publications/liljedal-thesis.pdf.

S. Lundgren and S. Björk. Game mechanics: Describing computer-augmented games
in terms of interaction, 2004. URL http://www.cs.chalmers.se/~lundsus/
lundgren_bjork_game_mechanics.pdf.

J. McGonigal. The Puppet Master Problem: Design for Real-World, Mission Based
Gaming. MIT Press, 2007.

Kathryn Merrick and Mary Lou Maher. Motivated reinforcement learning for non-player
characters in persistent computer game worlds. In ACE ’06: Proceedings of the
2006 ACM SIGCHI international conference on Advances in computer entertainment
technology, page 3, New York, NY, USA, 2006. ACM. ISBN 1-59593-380-8. doi:
http://doi.acm.org/10.1145/1178823.1178828. [Accessed: 04.08.10].

Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual displays. In IEICE
Transactions on Information Systems, volume Vol E77-D, No.12, December 1994.

Markus Montola. Exploring the edge of the magic circle: Defining pervasive games.
In CD-ROM Proceedings of Digital Arts and Culture. Copenhagen, pages 1–3, 2005.
doi: http://users.tkk.fi/mmontola/exploringtheedge.pdf. [Accessed: 01.04.10].

E. K. Moore and P. A. Simpson. The Enlightened Eye: Goethe and Visual Culture.
Editions Rodopi B.B., Amsterdam - New York, 2007.

MountainGoatSoftware. Learning scrum - the product backlog. URL http:
//www.mountaingoatsoftware.com/scrum/product-backlog. [Accessed:
28.03.2010].

Lennart Nacke. From playability to a hierarchical game usability model. In Future
Play ’09: Proceedings of the 2009 Conference on Future Play on @ GDC Canada,

196

pages 11–12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-685-4. doi: http:
//doi.acm.org/10.1145/1639601.1639609. [Accessed: 01.04.10].

C Nutt and M Kumar. Panel: Why user-generated content matters for games,
june 2008. URL http://www.gamasutra.com/php-bin/news_index.php?
story=19029. [Accessed: 04.05.10].

OpenHandsetAlliance. Open handset alliance. http://www.openhandsetalliance.com/,
2010a. URL http://www.openhandsetalliance.com/. [Accessed: 03.20.10].

OpenHandsetAlliance. Open handset alliance: Overview.
http://www.openhandsetalliance.com/oha_overview.html, 03 2010b. URL
http://www.openhandsetalliance.com/oha_overview.html. [Accessed:
03.20.10].

B. Pan, G. Gay, J. Saylor, H. Hembrooke, and D. Henderson. Usability, learning, and
subjective experience: user evaluation of k-moddl in an undergraduate class. In
JCDL ’04: Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries,
pages 188–189, New York, NY, USA, 2004. ACM. ISBN 1-58113-832-6. doi: http:
//doi.acm.org/10.1145/996350.996392.

Celia Pearce. Communities of Play: The Social Construction of Identity in Persistent
Online Game Worlds. The MIT Press, 2009.

R. E. Pedersen. Game Design Foundations. Wordware Publishing, Inc., Plano, Texas,
USA, 2003.

D.C. Phillips and J.F. Soltis. Perspectives on learning. Teachers College Press.
URL http://www.funderstanding.com/content/behaviorism. [Accessed:
09.20.09].

David Pinelle, Nelson Wong, and Tadeusz Stach. Heuristic evaluation for games:
usability principles for video game design. In CHI ’08: Proceeding of the twenty-
sixth annual SIGCHI conference on Human factors in computing systems, pages
1453–1462, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-011-1. doi:
http://doi.acm.org/10.1145/1357054.1357282. [Accessed: 04.08.10].

David Pinelle, Nelson Wong, Tadeusz Stach, and Carl Gutwin. Usability heuristics
for networked multi player games. In GROUP ’09: Proceedings of the ACM 2009
international conference on Supporting group work, pages 169–178, New York, NY,
USA, 2009. ACM. URL http://doi.acm.org/10.1145/1531674.1531700.

A. Pirhonen, H. Isomäki, C. Roast, and P. Saariluoma. Future Interaction Design.
Springer Verlag London, 2005.

M. Pivec, A. Koubek, and C. Dondi. Guidelines for game-based learning. 2004.

M. Prensky and S. Thiagarajan. Digital game-based learning. McGraw-Hill, 2007.

197

F. Rabiee. Focus-group interview and data analysis. In Proceedings of
the Nutrition Society (2004), volume 63, pages 655–660, 2004. URL
http://journals.cambridge.org/action/displayFulltext?type=
1&fid=902312&jid=PNS&volumeId=63&issueId=04&aid=902300. [Ac-
cessed: 01.20.10].

Josephine Reid. Design for coincidence: incorporating real world artifacts in location
based games. In DIMEA ’08: Proceedings of the 3rd international conference on Dig-
ital Interactive Media in Entertainment and Arts, pages 18–25, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-248-1. doi: http://doi.acm.org/10.1145/1413634.
1413643. [Accessed: 01.04.10].

Klaus Renzel and Wolfgang Keller. Client/server architectures for business
information systems. 1997. URL http://www.objectarchitects.de/
ObjectArchitects/papers/Published/ZippedPapers/renzel.pdf. [Ac-
cessed: 03.30.10].

B. Reynolds. How ai enables designers, apr 2004. URL http://gamasutra.com/
phpbin/. [Accessed: 04.08.10].

Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, 2007.

Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. Android Application
Development: Programming with the Google SDK O’Reilly Series. O’Reilly Media,
Inc., 2009.

A. M. Ronchi. eCulture: Cultural Content in the Digital Age. Springer-Verlag Berlin,
2009.

RubiconConsulting. The apple iphone:successes and challenges for the mobile indus-
try. a study of iphone users, 03 2008. URL http://rubiconconsulting.com/
downloads/whitepapers/Rubicon-iPhone_User_Survey.pdf. [Accessed:
01.04.10].

K. Salen and E. Zimmermann. Rules of Play: Game Design Fundamentals. MIT Press,
2003.

M. Sharples. Big issues in mobile learning. Report of a workshop by the kaleidoscope
network of excellence mobile learning initiative, University of Nottingham, 2007.

M. Sharples. Methods for evaluating mobile learning. In G.N. Vavoula, N. Pachler, and
A. Kukulska-Hulme, editors, Researching Mobile Learning: Frameworks, Tools and
Research Designs, pages 17–39. Peter Lang Publishing Group, 2009.

M. Sharples, J. Taylor, and G. Vavoula. Towards a theory of mobile learning, mobile
technology: the future of learning in your hands. In Proceedings of the MLEARN
2005, 2005.

198

SkyhookWireless. Application developers survey: iphone, android, palm, symbian,
j2me, rim, windows mobile, 2009. URL http://www.locationrevolution.
com/stats/SkyhookDevelopersSurvey2009.pdf. [Accessed: 01.04.10].

R. E. Snow. Abilities and academic tasks. In R. J. Sternberg and R. K. Wright, edi-
tors, Mind in Context: Interactionist perspectives on human intelligence, pages 1–38.
Cambridge University Press, New York, 1994.

Carolyn Snyder. Paper prototyping sure, it’s low-tech, but this usability testing method
can help you sidestep problems before you write your code, nov 2001. URL http:
//www.snyderconsulting.net/us-paper.pdf. [Accessed: 04.08.10].

Carolyn Snyder. Paper prototyping: the fast and easy way to design and refine user
interfaces. Morgan Kaufmann, San Fransisco, CA, USA, 2003.

J. Spolsky. User Interface Design for Programmers. Apress, Inc. New York, 2001.

Jared M. Spool, Tara Scanlon, and Carolyn Snyder. Product usability: survival tech-
niques. In CHI ’98: CHI 98 conference summary on Human factors in computing
systems, pages 113–114, New York, NY, USA, 1998. ACM. URL http://doi.
acm.org/10.1145/286498.286560. [Accessed: 04.08.10].

SQL. BNF grammar for ISO/IEC 9075:1992 - database language SQL (SQL-92).
http://savage.net.au/SQL/sql-92.bnf.html, 2010. URL http://savage.net.au/
SQL/sql-92.bnf.html. [Accessed: 03.21.10].

K. Squire. Content to context: Videogames as designed experience squire. EDUCA-
TIONAL RESEARCHER, 35:19–29, 2006.

X. Sun, T. Plocher, and W. Qu. Usability and Internationalization - HCI and Culture,
chapter An Empirical Study on the Smallest Comfortable Button/Icon Size on Touch
Screen, page 615. Springer-Verlag Berlin Heidelberg, 2007.

P. Sweetser and P. Wyeth. Gameflow: A model for evaluating player. ACM Computers in
Entertainment,, 3(3), jul 2005. URL http://doi.acm.org/10.1145/1077246.
1077253. [Accessed: 01.02.10].

T-Mobile. The t-mobile g1 with google phone, 2009. URL http://www.t-mobileg1.
com/. [Accessed: 09.14.09].

TeachingSupportServices. Learning objectives: A basic guide, 2003. URL http:
//www.tss.uoguelph.ca/resources/idres/learningobjectives1.pdf.
[Accessed: 09.21.09].

J. Tidwell. Designing Interface - Patterns for Effective Interaction Design. O’Reilly,
Sebastopol, 2006.

Joshua Topolsky. Mobile os shootout: iphone os 3.0 enters the fray, 2009. URL http:
//www.kmb-designs.com/colors/grey.html. [Accessed: 01.04.10].

199

Anders Tychsen, Michael Hitchens, and Thea Brolund. Character play: the use of
game characters in multi-player role-playing games across platforms. Comput. Enter-
tain., 6(2):1–24, 2008. ISSN 1544-3574. doi: http://doi.acm.org/10.1145/1371216.
1371225. [Accessed: 04.08.10].

L. Uden. Activity theory for designing mobile learning. International Journal of Mobile
Learning and Organisation 2007, 1(1):81–102, 2007.

R. Wagner. Professional iPhone and iPod touch Programming: Building Applications
for Mobile Safari. Wiley Publishing Inc., 2008.

Charlotte Wiberg, Kalle Jegers, and Heather Desurvire. How applicable is your eval-
uation methods - really? analysis and re-design of evaluation methods for fun and
entertainment. In ACHI ’09: Proceedings of the 2009 Second International Con-
ferences on Advances in Computer-Human Interactions, pages 324–328, Wash-
ington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3529-6. doi:
http://dx.doi.org/10.1109/ACHI.2009.54.

Wikipedia. Scrum (development), 2010a. URL http://en.wikipedia.org/wiki/
Scrum_(development). [Accessed: 28.03.2010].

Wikipedia. Wizard (software), 2010b. URL http://en.wikipedia.org/w/index.
php?title=Wizard_(software)&oldid=347750342. [Accessed: 29.03.2010].

Terry Winograd. Architectures for context. Hum.-Comput. Interact., 16(2):401–419,
2001. ISSN 0737-0024. doi: http://dx.doi.org/10.1207/S15327051HCI16234_18.
[Accessed: 04.05.10].

José P. Zagal, Jochen Rick, and Idris Hsi. Collaborative games: lessons learned from
board games. (1):24–40, 2006.

200

A. Visual Documentation

Other design aspects not covered by the final report. This section serves as visual doc-
umentation of the mobileHIVE’s project, based on voted contests made by the project
members.

A.1. mobileHIVE

A.1.1. Name of the Project: Chosen by votes, at 29.05.2009

Name’s concept: Bees are having a very social nature and are building communities,
which is what we want the users to create by using our game. Their hive resem-
bles our busy group that tries to develop this game.

Authors: Jana Leoni Wedekind, Cristina Laura Botta

A.1.2. Logo of the Project: Chosen by votes, at 05.06.2009

Logo’s concept: In this logo three hive "capsules" are combined suggesting the union
of colors, which can be also a metaphor for the union of different skills back-
grounds that are presented in our group. In the center, the result of this colors’
union is another hexagonal form in white color, which irradiates content for all
corners, symbolizing the mobile aspect of our project.

Author: Joatan Preis Dutra

Logo:

A.2. StreetDroids

A.2.1. Name of the Game: Chosen by votes, at 08.10.2009

Name’s concept: Androids on the street.

201

Author: Isabella Lomanto

A.2.2. Logo of the Game: Chosen by votes, at 05.11.2009

Logo’s concept: Depicted are building blocks, which have an identical shape, but differ
in color. They are stacked and interconnected with each other to form a new
unit which fits perfectly into a foundation. The foundation has a door, which is
opened - signaling at the openness of our platform. To make the connection to the
wordmark and the environment the game is played in, the building-like structure is
multidimensional and situated on a street leading from the fore- to the background.

Author: Till Hennig

Logo:

A.3. WebDesign

A.3.1. WebDesign model for the Game: Chosen by votes, at 19.11.2009

Design’s concept: Androids on the street.

Author: Joatan Preis Dutra

Original Concept:

202

A.4. Poster for promotion

A.4.1. Poster for the Game: Chosen by votes, at 05.02.2010

Author: Joatan Preis Dutra

Original Concept (A2 format):

203

